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ABSTRACT

This paper describes a joint blind source separation and dereverber-
ation method that works adaptively and efficiently in a reverberant
noisy environment. The modern approach to blind source separa-
tion (BSS) is to formulate a probabilistic model of multichannel
mixture signals that consists of a source model representing the time-
frequency structures of source spectrograms and a spatial model
representing the inter-channel covariance structures of source images.
The cutting-edge BSS method in this thread of research is fast multi-
channel nonnegative matrix factorization (FastMNMF) that consists
of a low-rank source model based on nonnegative matrix factorization
(NMF) and a full-rank spatial model based on jointly-diagonalizable
spatial covariance matrices. Although FastMNMF is computation-
ally efficient and can deal with both directional sources and diffuse
noise simultaneously, its performance is severely degraded in a rever-
berant environment. To solve this problem, we propose autoregres-
sive FastMNMF (AR-FastMNMF) based on a unified probabilistic
model that combines FastMNMF with a blind dereverberation method
called weighted prediction error (WPE), where all the parameters are
optimized jointly such that the likelihood for observed reverberant
mixture signals is maximized. Experimental results showed the su-
periority of AR-FastMNMF over conventional methods that perform
blind dereverberation and BSS jointly or sequentially.

Index Terms— Blind source separation, blind dereverberation,
multichannel nonnegative matrix factorization, joint diagonalization.

1. INTRODUCTION

Multichannel audio signal processing has been used in a wide variety
of applications such as smart speakers, conversational robots, and
hearing aid systems [1, 2], where the recorded signals are usually
contaminated with utterances of non-target speakers, environmental
noise, and reverberations in an unknown environment. To improve
the speech intelligibility and the performance of automatic speech
recognition (ASR), one may sequentially perform dereverberation
and source separation (in the reverse order) for reverberant noisy
recorded signals. This approach, however, is sub-optimal because the
dereverberation and separation processes have mutually-dependent
relationships. This calls for joint blind source separation (BSS) and
dereverberation, where the acoustic characteristics of an environment
are estimated adaptively without using any prior information.

A modern approach to BSS is to formulate a probabilistic gener-
ative model of observed mixture signals. A representative example
is an underdetermined BSS method called multichannel nonnegative

This work is partially supported by JSPS KAKENHI Nos. 19H04137,
20H01159, 20K21813, and 20K19833.
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Fig. 1: The generative model of the reverberant mixture signals.

matrix factorization (MNMF) [3–5] that consists of an NMF-based
source model representing the low-rank structure of the power spectral
densities (PSDs) of sources and a full-rank spatial model representing
the covariance structure of source images. MNMF, however, suffers
from the high computational cost and the strong sensitivity to pa-
rameter initialization because of the high degree of freedom of the
full-rank spatial covariance matrices (SCMs) of sources. Although a
constrained version of MNMF called independent low-rank matrix
analysis (ILRMA) [6] that restricts the SCMs to rank-1 matrices can
mitigate this problem, it works only under a determined condition and
the rank-1 assumption is often violated in reality. As an intermediate
method between MNMF and ILRMA, FastMNMF [7–9] restricts the
SCMs to jointly-diagonalizable (JD) yet full-rank matrices. FastM-
NMF was experimentally shown to be as computationally efficient as
ILRMA and works better than MNMF and ILRMA [9].

For blind dereverberation, a monaural reverberant signal is often
represented by an autoregressive (AR) model that can deal with longer
reverberation thanks to the long-term nature of the infinite impulse
response. Using a vector extension of the AR model, weighted predic-
tion error (WPE) [10,11] has been proposed for blind dereverberation
of multichannel audio signals, where the PSDs of a dry signal and
a dereverberation filter are estimated jointly. To perform BSS in a
reverberant environment, WPE was recently integrated with ILRMA
(called AR-ILRMA in this paper) [12].

In this paper, we propose a joint blind source separation and dere-
verberation method called AR-FastMNMF that integrates FastMNMF
with WPE in a statistically-principled manner (Fig. 1). Specifically,
we formulate a probabilistic model of reverberant mixture signals
that consists of 1) the NMF-based low-rank source model represent-
ing dry monaural source spectrograms, 2) the jointly-diagonalizable
full-rank spatial model representing multichannel direct signals, and
3) the AR model adding reverberation to the sum of the direct signals
through a feedback loop. Note that the proposed AR extension can
be applied to any BSS methods based on the jointly-diagonalizable
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spatial model and an arbitrary source model (e.g., DNN-based speech
model [13, 14] as in [8]). Thanks to the full-rank nature of the spatial
model, AR-FastMNMF can deal with diffuse noise under an overde-
termined or determined condition. We experimentally confirm that
AR-FastMNMF outperform AR-ILRMA and a two-step method that
uses WPE and FastMNMF sequentially in terms of separation perfor-
mance and speech intelligibility in noisy reverberant environments.

2. RELATED WORK

For joint speech dereverberation and enhancement, one can sequen-
tially use WPE and beamforming based on deep neural networks
(DNNs) [15], where the time-frequency (TF) masks of dry speech are
estimated with a DNN for calculating dereverberation filters [16, 17]
and those of speech and noise are then estimated with another DNN
for calculating demixing filters [18, 19]. While these DNNs are con-
catenated and jointly optimized in the training phase such that the
ASR performance for the dereverberated enhanced speech is max-
imized, such a supervised approach increases the sensitivity to the
environment. In the test phase, WPE and DNN-based beamforming
can be used alternately and iteratively [20]. Extending this approach
to multiple speech separation under a condition that the TF-masks
of each source are given, a joint separation, dereverberation, and
denoising method was proposed [21]. Although DNN-based mask
estimation is computationally efficient, robust mask estimation from
noisy reverberant mixture signals is still an open problem because
the acoustic characteristics of a real environment may significantly
differ from those covered by the training data.

For joint blind source separation and dereverberation, a BSS
method called full-rank covariance analysis (FCA) [22] based on the
full-rank spatial model was integrated with an autoregressive moving
average (ARMA) model representing the reverberant process [23]
(called ARMA-FCA in this paper). Although ARMA-FCA can deal
with diffuse noise thanks to the full-rank spatial model, it needs to
solve the permutation problem in a post-processing step because of
the frequency-wise nature of source component estimation. To avoid
the permutation problem under a determined condition, autoregressive
ILRMA (AR-ILRMA) [12] that combines ILRMA [6] based on the
rank-1 spatial model with WPE [10, 11] was proposed. In [24], the
permutation problem of ARMA-FCA was alleviated by utilizing
the parameters estimated by AR-ILRMA. The computational cost
of ARMA-FCA, however, is larger than those of AR-ILRMA and
AR-FastMNMF because of the unconstrained full-rank SCMs.

3. PROPOSED METHOD

This section explains the joint blind source separation and derever-
beration method integrating the jointly-diagonalizable spatial model
with an autoregressive (AR) model.

3.1. Model formulation
Assuming that a mixture of N sources are recorded by M micro-
phones, let X = {xft}F,T

f=1,t=1 ∈ CF×T×M be the short-time
Fourier transform (STFT) coefficients of the observed multichannel
mixture signals, where F and T represent the number of frequency
bins and that of time frames, respectively. We formulate the observed
reverberant mixture xft using an AR model, where the reverberation
is represented by the convolutive mixture of the observed spectra of
the previous frames as follows:

xft = dft + rft =

N∑
n=1

dnft +

∆+L−1∑
l=∆

Bflxf,t−l, (1)

where dnft ∈ CM is the direct signal of source n at frequency f and
time t, rft ∈ CM is the reverberation represented by the AR model,
Bfl = [bfl1, . . . ,bflM ]T ∈ CM×M is a set of AR coefficients, and
L (≥ 1) and ∆ (≥ 1) represent the tap length and delay, respectively.
The delay parameter is used for preserving the correlations inherent
in the clean speech signals, and ∆ = 3 was used in our experiments.

We assume dnft follows a circularly symmetric complex Gaus-
sian distribution as follows:

dnft ∼ NC(0M , λnftGnf ) , (2)

where λnft represents the power spectral density (PSD) of source n.
Gnf ∈ SM

+ is the full-rank spatial covariance matrix (SCM) and SM
+

indicates the set of positive semidefinite matrices of size M . Using
the low-rank source model based on NMF, the PSDs {λnft}F,T

f,t=1 of
each source n are assumed to have low-rank structure as follows:

λnft =

K∑
k=1

wnkfhnkt, (3)

where K is the number of bases, wnkf ≥ 0 is the magnitude of basis
k of source n at frequency f , and hnkt ≥ 0 is the activation of basis
k of source n at time t.

To reduce the degree of freedom as in FastMNMF [9], we restrict
the SCMs of all sources to jointly-diagonalizable (JD) full-rank ma-
trices using a set of diagonalizers Q , {Qf , U−1

f }
F
f=1 and a set

of nonnegative vectors G̃ , {gn}Nn=1 as follows:

∀n, Gnf = Q−1
f Diag(gn)Q−H

f =

M∑
m=1

gnmufmuH
fm, (4)

where gn , [gn1, . . . , gnM ]T ∈ RM
+ is a frequency-independent

nonnegative vector of source n, Qf , [qf1, . . . ,qfM ]H ∈ CM×M

and Uf , [uf1, . . . ,ufM ] ∈ CM×M are non-singular matrices at
frequency f . Here, gn is shared over all frequency bins for jointly
diagonalizing the SCMs {Gnf}Ff=1 of source n. Because each rank-
1 matrix ufmuH

fm at frequency f corresponds to a particular source
direction and gn is considered to indicate the weights ofM directions,
gn should be shared over all frequency bins [9].

Using Eqs. (2), (3), and (4) and the reproductive property of the
Gaussian distribution, we say

dft ∼ NC

(
0M ,Q

−1
f

(
N∑

n=1

λnftDiag(gn)

)
Q−H

f

)
(5)

, NC

(
0M ,Q

−1
f Diag(yft) Q−H

f

)
, NC (0M ,Yft) , (6)

where yft , [yft1, . . . , yftM ]T and yftm ,
∑N

n=1 λnftgnm.
Since the SCMs are full-rank matrices unlike AR-ILRMA based on
rank-1 SCMs, dnft can represent diffuse noise. From Eqs. (1) and
(5), we have

p(xft|Θ, {xf,t−l}l∈L) = NC

(∑
l∈L

Bflxf,t−l,Yft

)
, (7)

where L , {∆, . . . ,∆ + L − 1}, Θ , {W,H,Q, G̃,B}, W ,
{wnkf}N,K,F

n,k,f=1, H , {hnkt}N,K,T
n,k,t=1, and B , {Bfl}F,L

f,l=1. If L is
set to zero, AR-FastMNMF reduces to FastMNMF.

To estimate the direct signal dnft, we use a multichannel Wiener
filter as follows:

E[dnft|xft] = YnftY
−1
ft

(
xft −

∑
l∈L

Bflxf,t−l

)
(8)

where Ynft , λnftGnf = Q−1
f Diag(λnftgn)Q−H

f .

512



3.2. Parameter estimation

The parameters Θ are estimated such that the log-likelihood func-
tion log p(X|Θ) is maximized. From Eq. (7), log p(X|Θ) =∑

f,t log p(xft|Θ, {xf,t−l}l∈L) is given by

log p(X|Θ) = −
F,T,M∑
f,t,m=1

(
d̃ftm
yftm

+ log yftm

)
+ T

F∑
f=1

log |QfQH
f |,

(9)

where d̃ftm , |qH
fmdft|2 and dft = xft −

∑
l∈L Bflxf,t−l.

3.2.1. Separation: Updating W, H, G̃, and Q

On condition that B is given, since Eq. (9) has the same form as the
log-likelihood of FastMNMF [9], Q, W, H, and G̃ can be updated
in almost the same way as FastMNMF. Qf is updated with iterative
projection (IP) [8, 25] as follows:

Vfm ,
1

T

T∑
t=1

dftd
H
ft

yftm
, (10)

qfm ← (QfVfm)−1em, (11)

qfm ← (qH
fmVfmqfm)−

1
2 qfm, (12)

where em is a one-hot vector whose m-th element is 1. The multi-
plicative update (MU) rules for W, H, and G̃ are given by

wnkf ← wnkf

√√√√∑T,M
t,m=1 hnktgnmd̃ftmy

−2
ftm∑T,M

t,m=1 hnktgnmy
−1
ftm

, (13)

hnkt ← hnkt

√√√√∑F,M
f,m=1 wnkfgnmd̃ftmy

−2
ftm∑F,M

f,m=1 wnkfgnmy
−1
ftm

, (14)

gnm ← gnm

√√√√∑F,T,K
f,t,k=1 wnkfhnktd̃ftmy

−2
ftm∑F,T,K

f,t,k=1 wnkfhnkty
−1
ftm

. (15)

To avoid the scale ambiguity, we adjust the scales of Q, G̃, and
W in this order in each iteration as follows:

µf ,
1

M
tr(QfQH

f ),

{
Qf ← µ

− 1
2

f Qf ,

wnkf ← µ−1
f wnkf ,

(16)

φn ,
M∑

m=1

gnm,

{
gnm ← φ−1

n gnm,

wnkf ← φnwnkf ,
(17)

νnk ,
F∑

f=1

wnkf ,

{
wnkf ← ν−1

nkwnkf ,

hnkt ← νnkhnkt.
(18)

3.2.2. Dereverberation: Updating B

Bfl depends on only the first term of Eq. (9), and rft is rewritten as

rft =
∑
l∈L

Bflxf,t−l = X̂ftb̂f . (19)

b̂f and X̂ft are given as follows:

b̂f , [bT
f :1, . . . ,b

T
f :M ]T ∈ CM2L, (20)

bf :m , [bT
f,∆,m, . . . ,b

T
f,∆+L−1,m]T ∈ CML, (21)

X̂ft , IM ⊗ x̄T
ft ∈ CM×M2L, (22)

x̄ft , [xT
f,t−∆, . . . ,x

T
f,t−(∆+L−1)]

T ∈ CML, (23)

where bflm is the m-th row vector of Bfl. Substituting Eq. (19) into
Eq. (9) and letting the partial derivative of Eq. (9) with respect to b̂f

equal to zero, the update rule for b̂f is given by

b̂f =

(
T∑

t=1

X̂H
ftY

−1
ft X̂ft

)−1( T∑
t=1

X̂H
ftY

−1
ft xft

)
. (24)

Although the first term accumulates T matrices of sizeM2L×M2L,
the memory usage and the computational cost can be reduced by
rewriting the update rule as in [21] as follows:

ψf ,
M∑

m=1

qfm ⊗

(
T∑

t=1

xH
ftqfm

yftm
x̄ft

)∗
, (25)

Φf ,
M∑

m=1

(qfmqH
fm)⊗

(
T∑

t=1

x̄ftx̄
H
ft

yftm

)T

, (26)

b̂f = Φ−1
f ψf , (27)

where (·)∗ indicates the complex conjugate. This rewrite is also appli-
cable to AR-ILRMA, where yftm and qH

fm are replaced with λnft

and the m-th row vector of the demixing matrix, but not applicable
to ARMA-FCA because of the unconstrained full-rank SCMs.

4. EVALUATION

This section reports comparative experiments for evaluating AR-
FastMNMF. We compare our method with the state-of-the-art unsu-
pervised joint source separation and dereverberation methods using
reverberant mixture signals of two speeches and noise signals.

4.1. Experimental conditions

We prepared a dataset of noisy reverberant mixture signals using the
simulation data of REVERB Challenge dataset [26]. Each mixture
signal consisted of diffuse noise recorded in real environments and
two reverberant speech signals synthesized by convolving dry speech
signals with real impulse responses from the development and evalua-
tion subsets of REVERB Challenge dataset. The signal-to-noise ratio
(SNR) between mixture of direct speech signals and noise was set
to 0 or 10 dB. The impulse responses were recorded in three rooms
with the reverberation times RT60 of 250 ms, 500 ms, and 700 ms.
The distances between sound sources and microphones were set to
0.5 m (near) and 2.0 m (far). We thus tested six conditions in total,
where 20 signals were used for each condition. Audio signals were
sampled at 16 kHz and processed by STFT with a Hann window of
1024 points (F = 513) and a shifting interval of 256 points.

For comparison, we tested the sequential use of WPE [10,11] and
ILRMA [6], that of WPE and FastMNMF [9], AR-ILRMA [12], AR-
FastMNMF (proposed), and two-step ARMA-FCA [27]. All methods
were configured with N = M = 8 and the delay was set to ∆ = 3.
The tap length was set to L ∈ [0, 2, 4, 8], where AR-FastMNMF and
AR-ILRMA with L = 0 reduce to vanilla FastMNMF and ILRMA,
respectively. In ARMA-FCA, the tap length of the MA model was set
to 4. The number of bases was set to K ∈ [2, 4, 16]. We showed the
scores with the bestK for each method in each SNR. In the sequential
methods, WPE was updated 10 times, and FastMNMF or ILRMA was
updated 150 times. Q, G̃, and B of AR-FastMNMF were initialized
to those estimated by AR-FastMNMF with K = 2 and 50 iterations.
Similarly, AR-ILRMA was initialized using AR-ILRMA withK = 2.
AR-FastMNMF and AR-ILRMA were then updated 100 times. In
two-step ARMA-FCA, AR-ILRMA was updated 100 times, and then
ARMA-FCA was updated 50 times as in [27].
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Table 1: SDRs [dB] obtained by AR-FastMNMF and the conventional methods with best K.
Method Observed WPE + ILRMA WPE + FastMNMF AR-ILRMA AR-FastMNMF Two-step ARMA-FCA

Tap length L - 2 4 8 2 4 8 0 2 4 8 0 2 4 8 2 4 8

SNR=0, far -4.2 7.3 7.6 7.5 8.9 9.4 9.4 5.2 7.7 7.9 6.5 6.6 9.1 9.5 9.2 8.9 8.8 7.9

SNR=0, near -4.2 7.2 7.1 7.1 9.8 9.8 9.6 6.1 7.6 7.7 7.0 8.8 9.9 10.1 9.7 8.9 8.8 8.4

SNR=10, far -2.5 10.9 11.6 11.7 11.0 11.7 11.8 7.8 10.8 11.6 10.6 8.1 11.1 12.0 12.1 11.1 10.9 9.5

SNR=10, near -1.2 11.7 11.7 11.5 12.6 12.6 12.5 10.3 12.1 12.1 11.2 11.2 12.8 13.1 12.9 11.9 11.8 10.7

Table 2: PESQs obtained by AR-FastMNMF and the conventional methods with best K.
Method Observed WPE + ILRMA WPE + FastMNMF AR-ILRMA AR-FastMNMF Two-step ARMA-FCA

Tap length L - 2 4 8 2 4 8 0 2 4 8 0 2 4 8 2 4 8

SNR=0, far 1.13 1.26 1.28 1.28 1.36 1.38 1.38 1.24 1.28 1.30 1.24 1.30 1.37 1.40 1.36 1.35 1.34 1.32

SNR=0, near 1.10 1.35 1.34 1.33 1.54 1.55 1.51 1.33 1.39 1.40 1.31 1.47 1.55 1.57 1.50 1.45 1.47 1.41

SNR=10, far 1.15 1.47 1.52 1.52 1.54 1.59 1.59 1.32 1.49 1.54 1.47 1.38 1.55 1.61 1.60 1.55 1.56 1.47

SNR=10, near 1.10 1.78 1.80 1.75 1.97 1.99 1.97 1.65 1.85 1.87 1.74 1.82 2.00 2.05 2.05 1.83 1.83 1.70

We used the signal-to-distortion ratio (SDR) [28, 29] and the
perceptual evaluation of speech quality (PESQ) [30] for evaluating
the source estimation performance and the speech intelligibility, re-
spectively. In both measures, we used dry speech signals without
reverberation as reference signals.

4.2. Experimental results

Table 1 shows the average SDRs in the three different rooms with
the SNRs of 0 dB and 10 dB under the far and near conditions.
The sequential methods worked best when K = 4 and two-step
ARMA-FCA worked best when K = 2. AR-FastMNMF worked
best when K = 4 and K = 16 in the SNRs of 0 dB and 10 dB,
respectively, and the same applied to AR-ILRMA. In all conditions,
AR-FastMNMF outperformed the other methods. In particular, AR-
FastMNMF performed significantly better than FastMNMF in the
far condition and performed significantly better than AR-ILRMA
when the SNR was 0 dB. Although longer reverberation violates the
rank-1 spatial model of ILRMA, AR-ILRMA worked well even under
a reverberant condition where standard ILRMA failed, because the
reverberation, which increases the rank of the speech SCMs, was
successfully removed by the AR model. However, since AR-ILRMA
cannot deal with diffuse noise as shown in Fig. 2, the performance gap
between AR-ILRMA and AR-FastMNMF became larger in noisier
environments. One promising extension of AR-FastMNMF is to
restrict only the SCMs of directional sources to rank-1 matrices and
keeping the SCMs of diffuse noise to full-rank matrices as in [9].

Although two-step ARMA-FCA can deal with diffuse noise, it
underperformed AR-FastMNMF. In two-step ARMA-FCA, the SCM
of each source n is represented by the weighted sum of M rank-1
matrices unique to source n estimated by AR-ILRMA, and only the
weights were optimized. In AR-FastMNMF, the SCMs of N sources
are represented by the weighted sums of M common rank-1 matrices,
where both the weights and matrices were optimized.

Table 2 shows the average PESQs in each condition. In all the situ-
ations, AR-FastMNMF outperformed the other methods. Although in
terms of the SDR, AR-FastMNMF outperformed WPE+FastMNMF,
the speech intelligibilities of these methods were almost the same in
terms of the PESQ. One promising approach to further improving
the performance is to integrate a moving average (MA) model as in
ARMA-FCA [23], because in the MA model, the reverberations of
each source can be formulated individually, while in the AR model,
the reverberations of all sources are formulated as a whole.

0 50 100 150 200 250 300 350 400
Time

0

100

200

300

400

500

Fr
eq
ue
nc
y

(a) Observation

0 50 100 150 200 250 300 350 400
Time

0

100

200

300

400

500

Fr
eq
ue
nc
y

(b) Ground truth

0 50 100 150 200 250 300 350 400
Time

0

100

200

300

400

500

Fr
eq
ue
nc
y

(c) ILRMA

0 50 100 150 200 250 300 350 400
Time

0

100

200

300

400

500

Fr
eq
ue
nc
y

(d) FastMNMF

0 50 100 150 200 250 300 350 400
Time

0

100

200

300

400

500

Fr
eq
ue
nc
y

(e) AR-ILRMA

0 50 100 150 200 250 300 350 400
Time

0

100

200

300

400

500

Fr
eq
ue
nc
y

(f) AR-FastMNMF

Fig. 2: Spectrogram examples in the far condition with the SNR of 0
dB and RT60 of 700 ms.

5. CONCLUSION

This paper presented a joint blind source separation and dereverber-
ation method called AR-FastMNMF that integrates the source and
spatial models of FastMNMF with the AR-based reverberation model.
AR-FastMNMF is based on the maximum likelihood estimation of
a unified probabilistic model of observed reverberant mixture sig-
nals, where the reverberation is modeled by an AR process and the
time-frequency low-rank structures and channel covariance structures
of direct signals are represented by NMF and jointly-diagonalizable
full-rank SCMs, respectively. Thanks to the full-rank spatial model
capable of dealing with diffuse noise, AR-FastMNMF outperformed
AR-ILRMA by a large margin in a highly noisy environment.

For joint blind source separation, dereverberation, and denoising,
we plan to use both the AR and MA models as in ARMA-FCA [24]
and restrict the SCMs of only directional sources to rank-1 matrices
as in rank-constrained FastMNMF [9]. Another interesting direction
would be to integrate richer source models that can deal with the
time-frequency covariance structures [31, 32] as in [33, 34]
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