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Abstract—This paper describes statistical multichannel speech
enhancement based on a deep generative model of speech spectra.
Recently, deep neural networks (DNNs) have widely been used
for converting noisy speech spectra to clean speech spectra or
estimating time-frequency masks. Such a supervised approach,
however, requires a sufficient amount of training data (pairs of
noisy speech data and clean speech data) and often fails in an
unseen noisy environment. This calls for a blind source separa-
tion method called multichannel nonnegative matrix factorization
(MNMF) that can jointly estimate low-rank source spectra and
spatial covariances on the fly. However, the assumption of low-
rankness does not hold true for speech spectra. To solve these
problems, we propose a semi-supervised method based on an
extension of MNMF that consists of a deep generative model for
speech spectra and a standard low-rank model for noise spectra.
The speech model can be trained in advance with auto-encoding
variational Bayes (AEVB) by using only clean speech data and is
used as a prior of clean speech spectra for speech enhancement.
Given noisy speech spectrogram, we estimate the posterior of
clean speech spectra while estimating the noise model on the fly.
Such adaptive estimation is achieved by using Gibbs sampling in
a unified Bayesian framework. The experimental results showed
the potential of the proposed method.

I. INTRODUCTION

Speech enhancement forms the basis of automatic speech
recognition in a noisy environment. Several methods have been
proposed for single-channel speech enhancement. Robust prin-
cipal component analysis (RPCA), for example, is used for
decomposing the spectrogram of an input noisy speech signal
into a sparse spectrogram corresponding to speech and a low-
rank spectrogram corresponding to noise in an unsupervised
manner [1]. Nonnegative matrix factorization (NMF) can be
used for supervised speech enhancement [2]. In the training
phase, typical spectra of speech and/or noise are learned, and
in the denoising phase, an observed spectrogram is approxi-
mated by the weighted sums of the learned spectra.

Multichannel extensions of NMF (MNMF) have been de-
veloped to deal with spatial information related to a sound
propagation process [3]–[6]. The power spectrogram of each
source signal is given by the sum of products of basis spectra
and their activations. The complex spectrograms of observed
multichannel signals are given by the sum of spectrograms
of propagated source signals. Ozerov et al. [3] pioneered the
use of NMF for multichannel source separation, where the
spatial covariance matrices were restricted to rank-1 matrices
and the EM or multiplicative update algorithm was used for
minimizing the cost function based on the Itakura-Saito (IS)
divergence. This model was extended to have full-rank spatial
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Fig. 1: A generative model of multichannel noisy spectra with
a deep speech prior.

covariance matrices [7]. Sawada et al. [4] introduced parti-
tioning parameters to have a set of basis spectra shared by all
sources and derived a majorization-minimization (MM) algo-
rithm. Nikunen and Virtanen [8] proposed a similar model that
represents the spatial covariance matrix of each source as the
weighted sum of all possible direction-dependent covariance
matrices and used the MM algorithm for minimizing the cost
function based on the Euclidean distance. Kitamura et al. [5]
modified the model in [4] by restricting spatial covariance
matrices to rank-1 matrices, resulting in a unified model of
NMF and independent vector analysis (IVA). Itakura et al. [6]
proposed a Bayesian extension of MNMF. In application for
speech enhancement, however, a potential problem common in
these approaches is that the basic assumption of low-rankness
does not hold true for speech spectra.

Deep neural networks (DNNs) have widely been used for
supervised speech enhancement. In a single-channel scenario,
one can use a denoising autoencoder (DAE) that takes as
input noisy speech spectra and directly outputs clean speech
spectra, which is trained with pair data [9]. Alternatively, one
can train a DNN that outputs a time-frequency mask [10].
Multichannel extensions have been investigated [11]–[14]. For
example, a time-frequency mask is estimated using a long
short-term memory (LSTM) and then the estimated mask is
used for calculating the steering vectors and spatial covariance
matrices of speech and noise used for beamforming [11], [12].

Recently, DAEs have been used for improving multichan-
nel source separation methods that iteratively and alternately
optimize the power spectrum densities and spatial covariance
matrices of individual sound sources [13], [14]. In the opti-
mization process, the current estimates of the power spectrum
densities are refined by using a DAE. Although this approach
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is experimentally found to work well, it requires pairs of noisy
and clean speech for training DAEs and can be unstable in an
unseen noisy environment. In addition, the denoising step is
not properly derived based on statistical inference.

In this paper we propose a multichannel speech enhance-
ment method that integrates a deep generative model of speech
spectra and an NMF-based generative model of noise spectra
to formulate a unified probabilistic model of multichannel
noisy spectra (Fig. 1). The speech model is a deep latent
variable model, which can be pre-trained by using only clean
speech data and is expected to learn speech characteristics such
as fundamental frequencies (F0s) and spectral envelopes in a
latent space. Since noise varies depending on the environment,
on the other hand, the noise model is learned on the fly in
an unsupervised manner. Using both models, we can estimate
the power spectrum densities and spatial covariance matrices
of speech and noise by using Gibbs sampling. This model is a
multichannel extension of [15]. The use of spatial information
is expected to improve the performance.

The main contribution of the paper is that we first pro-
pose a genuine probabilistic generative model of multichannel
spectra that involves a pre-trained deep generative model as a
speech prior. This enables us to infer all random variables in a
Bayesian manner. Since the proposed method uses only clean
speech data, it is robust to an unseen noisy environment.

II. VARIATIONAL AUTOENCODER

We here review variational autoencoder (VAE) [16]. A VAE
is used to estimate a generative process, which generates data
from a latent variable, and to estimate the variational posterior
of the latent variable, which approximates the true posterior.
The VAE is based on the assumption that the data x is gen-
erated from a distribution pθ(x|z), where θ represents the
parameters of a DNN and z ∈ RD is a latent variable that
is the input to the DNN. The latent variable is often assumed
to be generated from the standard Gaussian distribution.

Since in reality the latent variable is unknown, it is impos-
sible to directly estimate the parameter θ. It is also difficult
to calculate the true posterior pθ(z|x) because the marginal
likelihood pθ(x) =

∫
pθ(x|z)p(z)dz is intractable. The VAE

solves these problems by approximating the true posterior by a
variational posterior qϕ(z|x) given by a DNN with parameters
ϕ and input x. In the VAE framework, qϕ(z|x) and pθ(x|z)
are called an encoder and a decoder, respectively, and the
parameters θ and ϕ are optimized together.

The VAE estimates θ and ϕ so that the log marginal like-
lihood log pθ(x) is maximized. The log marginal likelihood
can be rearranged as follows:

log pθ(x) ≥ −KL(qϕ(z|x)∥p(z)) + Eqϕ [log pθ(x|z)] (1)
def
= L(θ, ϕ), (2)

where KL(q∥p) (≥ 0) indicates the Kullback-Leibler (KL)
divergence. The VAE tries to find a local maximum of
log pθ(x) by maximizing the lower bound L(θ, ϕ). The partial
derivatives of L(θ, ϕ) w.r.t. θ and ϕ are thus necessary. Since

the partial derivatives of Eqϕ [log pθ(x|z)] cannot be calculated
analytically, the VAE approximates Eqϕ [log pθ(x|z)] by using
a reparameterization trick as follows:

Eqϕ [log pθ(x|z)] = Ep(ϵ)[log pθ(x|z̃)] (3)

≈ 1

L

L∑
l=1

log pθ(x|z̃(l)), (4)

where z̃(l) = gϕ(ϵ
(l)), ϵ(l) ∼ p(ϵ), and L is the

number of samples. The p(ϵ) and gϕ(ϵ) are chosen in
accordance with the variational posterior qϕ(z|x). When
qϕ(z|x) =

∏D
d=1 N (zd |µϕ,d(x), σ

2
ϕ,d(x)), p(ϵ) = N (0, ID)

and gϕ(ϵ) = µϕ(x)+ϵ⊙
√
σ2
ϕ(x), where N (µ, σ2) indicates

a Gaussian distribution with mean µ and variance σ2, and
⊙ indicates an element-wise product. Thus, the derivative of
L̃(θ, ϕ) = −KL(qϕ(z|x)∥p(z)) + 1/L

∑L
l=1 log pθ(x|z̃(l)) is

tractable, and the VAE uses −L̃(θ, ϕ) as the cost function for
training the DNNs.

III. PROPOSED METHOD

We explain the proposed method that integrates a DNN-
based generative model of speech spectra and an NMF-based
generative model of noise spectra in a unified probabilisic
model. First, we formulate the generative process of multi-
channel observed signals, which consists of a spatial model
and speech and noise models. Next, we explain how to esti-
mate the speech and noise spectra in a Bayesian manner.

A. Problem Specification

In this paper, we assume that the observed spectra X con-
tain dominant target speech and additional noise. Let F, T,
and M be the number of frequency bins, time frames, and
microphones, respectively. The index of a sound source is
denoted by i. The observed spectra xft and the source signals
sft at time frame t and frequency bin f are defined as follows:

xft = [xft1, · · · , xftM ] ∈ CM , (5)

sft = [sft1, sft2] ∈ C2, (6)

where the first sound source sft1 is the target speech and the
second source sft2 is the noise.

B. Spatial Modeling

A spatial model represents the sound propagation process
between sound sources and microphones. First, we assume
that each time-frequency bin of the source i, sfti, follows a
complex Gaussian distribution as follows:

sfti ∼ NC (0, λfti) , (7)

where NC(µ, σ
2) indicates a complex Gaussian distribution

with mean µ and variance σ2, and λfti indicates the power of
the sound source i at time frame t and frequency bin f . Next,
under the assumption of a time-invariant linear system, the
relationship between the observed signals and source signals
is given by

x
(i)
ft = afisfti, (8)
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where afi ∈ CM is a steering vector of the source i at
frequency bin f . Since Eq. (8) is a linear transformation of
the source signals, each time-frequency bin of the observed
signals xft also follows a complex Gaussian distribution as

x
(i)
ft ∼ NC (0, λftiAfi) , (9)

where Afi = afia
H
fi ∈ CM×M is a spatial covariance matrix.

In this case, there are two sound sources, and the observed
signals are given by

xft =
2∑

i=1

x
(i)
ft ∼ NC

(
0,

2∑
i=1

λftiAfi

)
. (10)

In a real noisy environment, the spatial covariance matrix can
be a full-rank matrix due to reverberation etc. We represent
a full-rank spatial matrix as Gfi to distinguish it from the
rank-1 matrix Afi.

C. Source Modeling

A source model represents the generative process of the
power spectrogram of each source. We use different kinds of
source models depending on the source properties. Assuming
that noise has low-rankness, we use NMF as a noise model.
Since an assumption of low-rankness is not suitable for speech,
we assume that the power spectrogram of speech is generated
from a DNN.

1) DNN-based generative model of speech: We assume that
the power spectrum densities of the target speech at time
frame t is generated from a DNN, the input of which is
a latent variable zt ∈ RD. The latent variable is assumed
to be generated from a standard Gaussian distribution. The
distribution of the speech spectra is represented as follows:

pθ(st1|zt) =
F∏

f=1

NC(sft1 | 0, λft1), (11)

λft1 = σ2
θ,f (zt), (12)

p(zt) = N (0, ID), (13)

where st1 = [s1t1, · · · , sFt1] ∈ RF , σ2
θ( · ) : RD → RF

+

is a non-linear function given by a DNN, and σ2
θ,f ( · ) is a

f -th element of the σ2
θ( · ). Since all the frequency bins of

the speech spectrum at time frame t are generated from the
same latent variable, this model can be considered to cap-
ture the dependency between frequency bins. Since it is im-
possible to obtain the ground-truth values of latent variables
Z = [z1, · · · ,zT ] ∈ RD×T , the VAE framework described in
Section II is used to train the DNN.

2) NMF-based generative model of noise: NMF approx-
imates the power spectrogram with the product of a basis
matrix W = (wfk) ∈ RF×K and an activation matrix H =
(hkt) ∈ RK×T , where K denotes the number of bases. A
component wfk indicates the magnitude of the k-th basis at
frequency bin f , and hkt indicates the activation of the k-th
basis at time frame t.

The noise model is based on the assumption that there are
K bases and K activations, and the noise power spectrogram

is generated from the product of the bases and the activations.
Then, the distribution of the noise is given by

p(sft2|W ,H) = NC(sft2 | 0, λft2) (14)

= NC

(
sft2 | 0,

K∑
k=1

wfkhkt

)
. (15)

D. Model Formulation

The proposed model represents the generative process of
observed multichannel spectrograms by integrating the source
models and the spatial model as follows:

log p(xft|W ,H,G,Z) = logNC (xft|0,Yft)

= −tr
(
XftY

−1
ft

)
− log |Yft|+ const, (16)

where Xft = xftx
H
ft, and Yfti and Yft are given by

Yfti = λftiGfi, (17)

Yft =
2∑

i=1

Yfti =
2∑

i=1

λftiGfi. (18)

Since λft1 is a power spectrum of the speech, and λft2 is that
of the noise, λfti is given by

λft1 = σ2
θ,f (zt), (19)

λft2 =

K∑
k=1

wfkhkt. (20)

To complete a Bayesian formulation, we put a conjugate
prior to each parameter as follows:

wfk ∼ Gamma(aw, bw), (21)
hkt ∼ Gamma(ah, bh), (22)

Gfi ∼ WishartC(ν,G
0
fi), (23)

where a∗ > 0, b∗ > 0, ν ≥ M , and G0
fi is positive definite

matrix. Gamma(a, b) indicates Gamma distribution with a
shape parameter a and a rate parameter b, and WishartC(ν,G0)
is a complex Wishart distribution with degree of freedom ν
and scale matrix G0 given by

WishartC(G | ν,G0) ∝ |G|ν−Mexp(−tr(G−1
0 G)). (24)

E. Speech Enhancement

To enhance the target speech, we use a multichannel Wiener
filter (MWF) [4]. With the MWF, the enhanced speech spec-
trum s̃ft1m is given by

s̃ft1m = (Yft1Y
−1
ft xft)m. (25)

F. Unsupervised Pre-training

The parameter θ of the deep speech prior pθ(st1|zt) is esti-
mated by maximizing the log marginal likelihood log pθ(s1),
where s1 = {sft1}F,T

f,t=1 is the speech spectra. Since the log
marginal likelihood is analytically intractable, we use the VAE
for estimating the parameter ϕ of the variational posterior
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qϕ(Z|s1) and the parameter θ together. The variational pos-
terior is defined as follows:

qϕ(Z|s1) =
T∏

t=1

D∏
d=1

qϕ(ztd | st1) (26)

=
T∏

t=1

D∏
d=1

N
(
ztd |µϕ,d(|st1|2), σ2

ϕ,d(|st1|2)
)
, (27)

where |st1|2 is the power spectra of the speech of all frequency
bins at time frame t. µϕ( · ) : RF → RD and σ2

ϕ( · ) : RF →
RD

+ are non-linear functions given by DNNs, and µϕ,d( · ) and
σ2
ϕ,d( · ) are the d-th element of µϕ( · ) and σ2

ϕ( · ), respec-
tively. As mentioned in Section II, the parameters of σ2

θ( · ),
µϕ( · ), and σ2

ϕ( · ) are estimated by maximizing the lower
bound L̃(θ, ϕ) given by

L̃(θ, ϕ) =
T∑

t=1

D∑
d=1

1

2

(
log (σ2

ϕ,d(|st1|2))− µϕ,d(|st1|2)2 − σ2
ϕ,d(|st1|2)

)
+

F∑
f=1

T∑
t=1

1

L

L∑
l=1

{
−log σ2

θ,f (z
(l)
t )− |sft1|2

σ2
θ,f (z

(l)
t )

}
+ const,

(28)

z
(l)
t = µϕ(|st1|2) + ϵ(l) ⊙

√
σ2
ϕ(|st1|2), (29)

where ϵ(l) ∼ N (0, ID) and L is the number of samples.

G. Mathematical Formulas Used for Inference
To estimate the parameters in a Bayesian manner, we lower-

bound the log likelihood (Eq. (16)). Here we summarize three
mathematical formulas [17] used for this. First, for a concave
function f1(G) = −tr(XG−1) with any matrix X ⪰ 0, we
use an inequality given by

−tr

X

(
N∑

n=1

Gn

)−1
 ≥ −

N∑
n=1

tr
(
G−1

n ΦnXΦH
n

)
,

(30)

where {Gn}Nn=1 is a set of arbitrary matrices, {Φn}Nn=1 is
a set of auxiliary matrices that sum to the identity matrix
(
∑N

n=1 Φn = I), and the equality holds when Φn =

Gn(
∑N

n′=1 Gn′)−1.
Second, for a convex function f2(G) = −log |G| (G ∈

RM×M ;G ⪰ 0), we calculate a tangent plane at arbitrary
Ω ⪰ 0 by using a first-order Taylor expansion as follows:

−log |G| ≥ −log |Ω| − tr(Ω−1G) +M, (31)

where the equality holds when Ω = G.
Third, for a convex function f3(x) = 1/

∑
n xn, we apply

Jensen’s inequality to obtain

1∑N
n=1 xn

≤
N∑

n=1

ψ2
n

1

xn
, (32)

where {ψn}Nn=1 is a set of auxiliary variables that ψn ≥ 0
and

∑
n ψn = 1, and the equality holds when ψn =

xn/(
∑

n′ xn′).

H. Bayesian Inference

Given observed data X = (Xft), our goal is to calculate
the full posterior of all random variables, p(Z,W ,H,G|X).
Since this is analytically intractable, we use a Markov chain
Monte Carlo (MCMC) method for generating random samples
from the posterior. The main difficulty is that the log likelihood
function given by Eq. (16) includes the inverse of a summation
of matrices and the logarithm of a matrix determinant. To solve
these problems, the log likelihood is lower-bounded by using
the inequalities (30), (31), and (32) as follows:

log p(xft|W ,H,G,Z) ≥

− tr

(
2∑

i=1

λftiΩ
−1
ft Gfi

)
− tr

(
1

λft1
Φft1XftΦ

H
ft1G

−1
f1

)

− tr

((
K∑

k=1

ψ2
ftk

wfkhkt

)
Φft2XftΦ

H
ft2G

−1
f2

)
+ const, (33)

where the equality holds when Φfti, Ωft, and ψftk satisfy

Φfti = λftiGfi(
2∑

i′=1

λfti′Gfi′)
−1, (34)

Ωft =

2∑
i=1

λftiGfi, (35)

ψftk =
wfkhkt∑K

k′=1 wfk′hk′t

. (36)

The conditional posteriors of wfk, hkt, and Gfi are given
as follows:

wfk | X,Θ\wfk
∼ GIG(aw, b

w
fk, ρ

w
fk), (37)

hkt | X,Θ\hkt
∼ GIG(ah, b

h
kt, ρ

h
kt), (38)

Gfi | X,Θ\Gfi
∼ MGIGC(ν,Rfi,Tfi), (39)

where Θ means the set of all variables and Θ\α means the set
of all variables except α. GIG(a, b, ρ) and MGIGC(ν,R,T )
represent a generalized inverse Gaussian (GIG) distribution
and a complex matrix GIG distribution given by

GIG(x | a, b, ρ) ∝ xa−1exp(−(bx+ ρ/x)), (40)

MGIGC(G | ν,R,T ) ∝ |G|ν−Mexp(−tr(RG+ TG−1)).
(41)

The parameters of the conditional posteriors bwfk, ρwfk, bhkt, ρ
h
kt,

Rfi, and Tfi are given as follows:

bwfk = bw +

T∑
t=1

hkttr(Ω
−1
ft Gf2), (42)

ρwfk =
T∑

t=1

1

hkt
ψ2
ftktr(Φft2XftΦ

H
ft2G

−1
f2 ), (43)

bhkt = bh +
F∑

f=1

wfktr(Ω
−1
ft Gf2), (44)
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(a) Encoder qϕ(zt | st1) outputs
the mean and variance of zt
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(b) Decoder pθ(st1 | zt) outputs
the power spectra of speech st1

Fig. 2: Architectures of the DNNs.

ρhkt =
F∑

f=1

1

wfk
ψ2
ftktr(Φft2XftΦ

H
ft2G

−1
f2 ), (45)

Rfi = (G0
fi)

−1 +
T∑

t=1

λftiΩ
−1
ft , (46)

Tfi =

T∑
t=1

1

λfti
ΦftiXftΦ

H
fti. (47)

As the conditional posterior of zt is intractable, we use
the Metropolis method, which draws a sample znew

t from
a proposal distribution that depends on the previous sample
zold
t and determines whether or not the sample is accepted

on the basis of the acceptance rate. The proposal distribution
q(zt|zold

t ) and the acceptance rate β are given as follows:

q(zt|zold
t ) = N (zold

t , ξID), (48)

βznew
t ,zold

t
= min

(
1,
p(xt|W ,H,G, znew

t )p(znew
t )

p(xt|W ,H,G, zold
t )p(zold

t )

)
,

(49)

where ξ is a variance parameter.

IV. EVALUATION

We conducted two types of experiments. In the first exper-
iment, we compared the proposed method with a method that
does not use spatial information to confirm the effectiveness
of the spatial information. In the second experiment, we com-
pared the proposed method with a state-of-the-art unsupervised
multichannel source separation method.

A. Confirmation of Effectiveness of Spatial Information

1) Experimental conditions: To confirm the effectiveness
of using spatial information, we compare the case of updat-
ing only source models with the case of updating both spa-
tial and source models. First, the spatial covariance matrices
{Gfi}F,2

f,i=1 were set to be identity matrices, and we updated
only the source models (Z, W , and H) 30 times. This meant
that we used observed signals of all channels but not spatial
information. Next, we updated both the source and spatial
models 30 times. We calculated the source separation perfor-
mance for the enhanced signals that are estimated with the
samples of each iteration. We used the signal-to-distortion ratio
(SDR) [18], [19] as evaluation metrics.

We used the simulated utterances in the development dataset
of CHiME3 [20] for evaluation. The dataset consists of 1640
simulated utterances in four types of noisy environment: on a
bus (BUS), in a cafe (CAF), in a pedestrian area (PED), and on
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Fig. 3: Source separation performance after each iteration.

a street junction (STR). We randomly chose 25 utterances for
each environment. Although these utterances were assumed to
be recorded using a tablet with 6 microphones, we selected
five channels (M = 5), channel 1, 3, 4, 5, and 6. This was
because the second microphone was set on the back side and
the others were on the front side.

To estimate the parameters of the speech prior p(st1|zt), we
used the VAE. The parameters of the VAE were the same as
in [15]. The dimension of the latent variables D was 10. The
architectures of the DNNs are shown in Fig. 2. To obtain the
spectrograms, we use a short time Fourier transform with a
shifting interval of 256 samples and a window length of 1024
samples; the number of frequency bins F was 513. We used
the WSJ-0 corpus [21] as a training dataset, which consists
of clean speech signals of about 15-hour length. The other
parameters of the proposed method were set as follows. The
number of the bases K = 5, and the parameter of the proposal
distribution ξ = 0.1. The parameters of the prior distributions
were aw = bw = ah = bh = 1, ν = M = 5, and G0

fi =
1
ν IM . The initial values of W and H were sampled from the
prior distributions. The initial values of Z were sampled from
the Gaussian distribution with mean µϕ,d(|x|2) and variance
σ2
ϕ,d(|x|2), where the inputs of µϕ,d(|x|2) and σ2

ϕ,d(|x|2) were
the power spectrograms of the observed signals. To obtain the
enhanced speech, the multichannel Wiener filter was used.

2) Experimental result: Fig. 3 shows the average SDRs
of the enhanced signals calculated from the samples of each
iteration. In all situations, the separation performance after
we updated spatial information was significantly improved.
Comparing the SDRs of 30th iteration and 60th iteration, they
were improved by 2.3 dB on average, and the effectiveness of
the spatial information was confirmed.

We find that the separation performance of the first iteration
was higher than that after a few iterations. At the first iteration,
the power spectrogram of the speech calculated from the initial
values of Z was close to the ground truth, whereas W and
H do not reflect the observed signals as they were randomly
sampled from the prior distributions. The deterioration of the
separation performance during the first few iterations is prob-
ably because Z was adversely affected from W and H that
did not yet approach appropriate values. It is interesting to
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TABLE I: The average SDRs for each situation.

Method Average BUS CAF PED STR
Proposed 10.6 9.8 10.8 11.7 10.1
ILRMA 12.3 11.6 12.6 13.9 11.1
Input 5.8 2.8 7.3 8.1 5.1

note that the encoder outputs reasonable values of Z from the
noisy speech spectra although it was trained with only clean
speech spectra.

B. Comparison with a State-of-the-art Unsupervised Multi-
channel Source Separation Method

1) Experimental conditions: We compared the source sep-
aration performance of the proposed method with that of a
state-of-the-art unsupervised multichannel source separation
method, independent low-rank matrix analysis (ILRMA) [5],
using the same data in terms of SDR. According to [5], the
ILRMA achieved the best score in a speech separation task
compared to other multichannel source separation methods
such as independent vector analysis (IVA) [22] and multichan-
nel NMF (MNMF) [3], [4]. The parameters of the ILRMA
were set similarly as in the experimental section in [5]. The
number of bases for each source was set to be 2, and the
number of iterations was set to be 200.

The parameters of the proposed method were the same ex-
cept the parameter G0

fi. We first used VAE-NMF reported
in [15], which is a single-channel version of the proposed
method. The parameters of the VAE-NMF is the same as those
of the proposed method except the parameters of the spatial
covariance matrix. After drawing 100 samples for burn-in,
we drew 50 samples and calculated the mean of the power
spectrograms. The parameter G0

fi is calculated as follows.

G0
fi =

1

ν

1∑T
t=1 rfti

T∑
t=1

rfti
Xft

λ̄fti
, (50)

rft1 =

{
1 (λft1 ≥ λft2)

0 (λft1 < λft2)
, (51)

where λ̄fti is the sample average of the power estimated by
the VAE-NMF. We updated only the source models 10 times
and updated both the source and spatial models 30 times.

2) Experimental results: Table I shows the average SDRs
in each environment for the proposed method and the ILRMA.
The proposed method had an SDR equivalent to the ILRMA in
the situation STR. In the other situations, on the other hand,
the average SDRs of the proposed method were lower than
those of the ILRMA. Fig. 4 shows the power spectrograms of
(a) an observed signal in the STR, (b) the clean signal, (c)
the enhanced signal with the proposed method, and (d) the
enhanced signal with the ILRMA. In this case, the SDRs of
the observed signal, the enhanced signal with the proposed
method, and the enhanced signal with the ILRMA are 0.3,
7.0, and 14.7, respectively. As we see, the proposed method
suppressed noise largely. However, noise that sounded like
speech still remained in the enhanced speech with the proposed
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(a) Observed spectrogram (channel 5)
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(b) Clean spectrogram
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(c) Enhanced spectrogram with proposed method
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(d) Enhanced spectrogram with ILRMA

Fig. 4: Results of speech enhancement by the proposed method
and the ILRMA. Power spectrograms are shown.

method as we find by listening to it. This was partly because
when the background sound contains speech, the proposed
method sometimes erroneously included the noise in the target
speech. Moreover, it sometimes suppressed the target speech,
for example, around 2.7 second and 3.0 second. A reason is
that for speech sections with heavy noise, many iterations are
required to guide the latent variables to appropriate values
since the initial value output from the encoder is not close
to the ground truth due to the heavy noise. Therefore, if a
speech section has low-rankness, the noise model (W and
H) absorbs the speech before the latent variables settle down
to appropriate values.

A promising solution to the problem of noise sounding
like speech is to incorporate time dependence between latent
variables zt (e.g. smoothness) and train the VAE so that speech
uttered by each speaker is described by a local region in the
latent space. If the noise sounding like speech is described by
latent variables away from such a local region for the target
speech, then the noise can be suppressed according to the
time dependence. A solution to the speech suppression is to
change the order of updating the variables in addition to the
above extension. By updating only the latent variables before
updating the noise model, it can be avoided that the noise
model absorbs the speech.
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V. CONCLUSION

This paper presented an innovative multichannel speech en-
hancement method that integrates a DNN-based generative
model of speech spectra and NMF-based generative model
of noise spectra. The advantage of the proposed method over
other DNN-based multichannel source separation methods is
that it uses only clean speech signals for training and the noise
model is estimated on the fly. In the experiment, we confirmed
the effectiveness of using the spatial information. The SDR of
the enhanced signal estimated using both the source models
and spatial model was superior to that of the enhanced signal
estimated using only source models. We compared the pro-
posed method with the ILRMA using the simulated data of
the CHiME3 development set. Although the separation per-
formance was lower than that of ILRMA, we were able to
find two issues for improving the proposed method. One is
the treatment for noise sounding like speech and the other is
suppression of speech in sections with heavy noise.

We plan to extend the proposed method by incorporating
time dependence between the latent variables. This would im-
prove the speech enhancement performance as discussed in
the last section. Dynamical systems with a deep generative
model architecture would be suitable for this extension [23].
Moreover, we plan to extend the proposed method to deal with
multiple speakers.
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