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ABSTRACT

This paper presents a statistical multipitch analyzer that
can simultaneously estimate pitches and chords (typical
pitch combinations) from music audio signals in an unsu-
pervised manner. A popular approach to multipitch anal-
ysis is to perform nonnegative matrix factorization (NMF)
for estimating the temporal activations of semitone-level
pitches and then execute thresholding for making a piano-
roll representation. The major problems of this cascading
approach are that an optimal threshold is hard to determine
for each musical piece and that musically inappropriate
pitch combinations are allowed to appear. To solve these
problems, we propose a probabilistic generative model that
fuses an acoustic model (NMF) for a music spectrogram
with a language model (hidden Markov model; HMM) for
pitch locations in a hierarchical Bayesian manner. More
specifically, binary variables indicating the existences of
pitches are introduced into the framework of NMF. The la-
tent grammatical structures of those variables are regulated
by an HMM that encodes chord progressions and pitch co-
occurrences (chord components). Given a music spectro-
gram, all the latent variables (pitches and chords) are esti-
mated jointly by using Gibbs sampling. The experimental
results showed the great potential of the proposed method
for unified music transcription and grammar induction.

1. INTRODUCTION

The goal of automatic music transcription is to estimate the
pitches, onsets, and durations of musical notes contained
in polyphonic music audio signals. These estimated values
must be directly linked with the elements of music scores.
More specifically, in this paper, a pitch means a discrete
fundamental frequency (F0) quantized in a semitone level,
an onset means a discrete time point quantized on a regular
grid (e.g., eighth-note-level grid), and a duration means a
discrete note value (integer multiple of the grid interval).

In this study we tackle multipitch estimation (subtask of
automatic music transcription) that aims to make a binary
piano-roll representation from a music audio signal, where
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Figure 1. Overview of the proposed model consisting of
language and acoustic models that are linked through bi-
nary variables S representing the existences of pitches.

only the existences of pitches are estimated at each frame.
A popular approach to this task is to use non-negative ma-
trix factorization (NMF) [1–7]. It approximates the mag-
nitude spectrogram of an observed mixture signal as the
product of a basis matrix (a set of basis spectra correspond-
ing to different pitches) and an activation matrix (a set of
temporal activations corresponding to those pitches). The
existence of each pitch is then determined by executing
thresholding or Viterbi decoding based a hidden Markov
model (HMM) for the estimated activations [7, 8].

This NMF-based cascading approach, however, has two
major problems. First, it is hard to optimize a threshold for
each musical piece. Second, the estimated results are al-
lowed to be musically inappropriate because the relation-
ships between different pitches are not taken into account.
In fact, music has simultaneous and temporal structures;
certain kinds of pitches (e.g., C, G, and E) tend to simulta-
neously occur to form chords (e.g., C major), which vary
over time to form typical progressions. If such structural
information is unavailable for multipitch analysis, we need
to tackle the chicken-and-egg problem that chords are de-
termined by pitch combinations, and vice versa.

To solve these problems, we propose a statistical method
that can discover chords and pitches from music audio sig-
nals in an unsupervised manner while taking into account
their interdependence (Fig.1). More specifically, we for-
mulate a hierarchical Bayesian model that represents the
generative process of an observed music spectrogram by
unifying an acoustic model (probabilistic model underly-
ing NMF) that represents how the spectrogram is generated
from pitches and a language model (HMM) that represents
how the pitches are generated from chords. A key fea-
ture of the unified model is that binary variables indicating
the existences of pitches are introduced into the framework
of NMF. This enables the HMM to represent both chord
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transitions and pitch combinations using only discrete vari-
ables forming a piano-roll representation with chord labels.
Given a music spectrogram, all the latent variables (pitches
and chords) are estimated jointly by using Gibbs sampling.

The major contribution of this study is to realize unsu-
pervised induction of musical grammars from music audio
signals by unifying acoustic and language models. This ap-
proach is formally similar to, but essentially different from
that to automatic speech recognition (ASR) because both
the models are jointly learned in an unsupervised manner.
In addition, our unified model has a three-level hierarchy
(chord–pitch–spectrogram) while ASR is usually based on
a two-level hierarchy (word–spectrogram). The additional
layer is introduced by using an HMM instead of a Markov
model (n-gram model) as a language model.

2. RELATED WORK

This section reviews related work on multipitch estimation
(acoustic modeling) and on music theory implementation
and musical grammar induction (language modeling).

2.1 Acoustic Modeling

The major approach to music signal analysi is to use non-
negative matrix factorization (NMF) [1–6, 9]. Cemgil et
al. [9] developed a Bayesian inference scheme for NMF,
which enabled the introduction of various hierarchical prior
structures. Hoffman et al. [3] proposed a Bayesian non-
parametric extension of NMF called gamma process NMF
for estimating the number of bases. Liang et al. [6] pro-
posed beta process NMF, in which binary variables are in-
troduced to indicate the needs of individual bases at each
frame. Another extension is source-filter NMF [4], which
further decomposes the bases into sources (corresponding
to pitches) and filters (corresponding to timbres).

2.2 Language Modeling

The implementation and estimation of music theory behind
musical pieces are composed have been studied [10–12].
For example, some attempts have been made to compu-
tationally formulate the Generative Theory of Tonal Mu-
sic (GTTM) [13], which represents the multiple aspects of
music in a single framework. Hamanaka et al. [10] re-
formalized GTTM through a computational implementa-
tion and developed a method for automatically estimating
a tree that represents the structure of music, called a time-
span tree. Nakamura et al. [11] also re-formalized GTTM
using a probabilistic context-free grammar model and pro-
posed inference algorithms. These methods enabled au-
tomatic analysis of music. On the other hand, induction
of music theory in an unsupervised manner has also been
studied. Hu et al. [12] extended latent Dirichlet allocation
and proposed a method for determining the key of a mu-
sical piece from symbolic and audio music based on the
fact that the likelihood of appearance of each note tends
to be similar among musical pieces in the same key. This
method enabled the distribution of notes in a certain key to
be obtained without using labeled training data.

Assuming that the concept of chords is a kind of music
grammar, statistical methods of supervised chord recogni-
tion [14–17] are deeply related with unsupervised musi-
cal grammar induction. Rocher et al. [14] attempted chord
recognition from symbolic music by constructing a directed
graph of possible chords and then calculating the optimal
path. Sheh et al. [15] used acoustic features called chroma
vectors to estimate chords from music audio signals. They
constructed an HMM whose latent variables are chord la-
bels and whose observations are chroma vectors. Maruo
et al. [16] proposed a method that uses NMF for extract-
ing reliable chroma features. Since these methods need
labeled training data, the concept of chords is required in
advance. Approaches to make use of a sequence of chords
in estimating pitches has also been proposed [18,19]. This
method estimates chord progressions and multiple pitches
simultaneously by using a dynamic Bayesian network and
shows better performance even with a simple acoustic model.
Recent works employ recurrent neural networks as a lan-
guage model to describe the relations between pitch com-
binations [20, 21].

3. PROPOSED METHOD

This section explains the proposed method of multipitch
analysis that simultaneously estimates pitches and chords
at the frame level from music audio signals. Our approach
is to formulate a probabilistic generative model for ob-
served music spectrograms and then solve the “inverse”
problem, i.e., given a music spectrogram, estimate unknown
random variables involved in the model. The proposed
model has a hierarchical structure consisting of acoustic
and language models that are connected through a piano
roll, i.e., a set of binary variables indicating the existences
of pitches (Fig. 1). The acoustic model represents the gen-
erative process of a music spectrogram from the piano roll,
basis spectra, and temporal activations of individual pitches.
The language model represents the generative process of
chord progressions and pitch locations from chords.

3.1 Problem Specification

The goal of multipitch estimation is to make a piano roll
from a music audio signal. Let X ∈ RF×T+ be the mag-
nitude spectrogram of a target signal, where F is the num-
ber of frequency bins and T is the number of time frames.
We aim to convert X into a piano roll S ∈ {0, 1}K×T ,
which represents the existences of K kinds of pitches over
T frames. In addition, we attempt to estimate a sequence
of chords Z = {zt}Tt=1.

3.2 Acoustic Modeling

The acoustic model is formulated in a similar way to beta-
process NMF having binary masks [6] (Fig. 2). The given
spectrogram X ∈ RF×T+ is factorized into bases W ∈
RF×K+ , activations H ∈ RK×T+ , and binary variables S ∈
{0, 1}K×T as follows:

Xft|W ,H,S ∼ Poisson
(∑K

k=1WfkHktSkt

)
, (1)
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Figure 2. The overview of the acoustic model based on a
variant of NMF having binary variables (masks).

where {Wfk}Ff=1 is the k-th basis spectrum, Hkt is the
volume of basis k at frame t, and Skt is a binary variable
indicating whether or not basis k is used at frame t.

A set of basis spectra W is divided into two parts: har-
monic spectra and noise spectra. In this study we prepare
Kh harmonic basis spectra corresponding to Kh different
pitches and one noise basis spectrum (K = Kh + 1). As-
suming that the harmonic structures of the same instrument
have the shift-invariant relationships, the harmonic part of
W are given by

{Wfk}Ff=1 = shift
(
{W h

f }Ff=1, ζ(k − 1)
)
, (2)

for k = 1, . . .Kh, where {W h
f }Ff=1 is a harmonic template

structure common to harmonic basis spectra used for NMF,
shift (x, a) is an operator that shifts x = [x1, . . . , xn]T

to [0, . . . , 0, x1, . . . , xn−a]T , and ζ is the number of fre-
quency bins corresponding to the semitone interval.

We put two kinds of priors on the harmonic template
spectrum {W h

f }Ff=1 and a noise basis spectrum {W n
f }Ff=1.

To make the harmonic spectrum sparse, we put a gamma
prior on {W h

f }Ff=1 as follows:

W h
f ∼ G

(
ah, bh

)
(3)

where ah and bh are hyperparameters. On the other hand,
we put an inverse-gamma chain prior [22] on {W n

f }Ff=1 to
induce the spectral smoothness as follows:

GWf |W n
f−1 ∼ IG

(
ηW , ηW

Wf−1

)
,

W n
f |GWf ∼ IG

(
ηW , η

W

GW
f

)
, (4)

where ηW is a hyperparameter that determines the strength
of smoothness andGWf is an auxiliary variable that induces
positive correlation between W n

f−1 and W n
f .

A set of activations H is represented in the same way
as W . If Hkt takes almost zero, Skt has no impact on
NMF. This allows Skt to take one (the corresponding pitch
is judged to be activated) even though the activation Hkt
is almost zero. We can avoid this problem by putting an
inverse-gamma prior for Hkt to induce non-zero values.
To induce the temporal smoothness in addition, we put the
following inverse-gamma chain prior onH:

GHkt|Hk(t−1) ∼ IG
(
ηH ,

ηH
Hk(t−1)

)
,

Hkt|GHkt ∼ IG
(
ηH ,

ηH
GH

kt

)
, (5)

where ηH is a hyperparameter that determines the strength
of smoothness andGHkt is an auxiliary variable that induces
positive correlation between Hk(t−1) and Hkt.

Chord progression

E♭

84 pitches

Binary variables

follows emission probabilities

follows transition probabilities

A♭ E♭ F B♭

Figure 3. The overview of the language model based on
an HMM that stochastically emits binary variables.

3.3 Language Modeling
The language model is an HMM that has a Markov chain of
latent variables Z = {z1, . . . , zT } (zt ∈ {1, . . . , I}) and
emits binary variablesS = {s1, . . . , sT } (st ∈ {0, 1}Kh),
where I represents the number of states (chords) and Kh

represents the number of possible pitches. Note that S is
actually a set of latent variables in the proposed unified
model. The HMM is defined as:

z1|φ ∼ Categorial(φ), (6)

zt|zt−1,ψzt−1
∼ Categorical(ψzt−1

), (7)

Skt|zt, πztk ∼ Bernoulli(πztk) (8)

where ψi ∈ RI is a set of transition probabilities of chord
i, φ ∈ RI is a set of initial probabilities, and πztk indicates
the probability that the k-th pitch is emitted under a chord
zt, We put conjugate priors on these parameters as:

ψi ∼ Dir(1I), φ ∼ Dir(1I), πztk ∼ Beta(e, f),
(9)

where 1I is the I-dimensional all-one vector and e and f
are hyperparameters.

In practice, we represent only the emission probabili-
ties of 12 pitch classes (C, C#, . . ., B) in one octave. Those
probabilities are copied and pasted to recover the emission
probabilities of Kh kinds of pitches. In addition, the emis-
sion probabilities {πik}Kh

k=1 of chord i are forced to have
circular-shifting relationships with those of other chords of
the same type. In this paper, we consider only major and
minor chords as chord types (I = 2× 12) for simplicity.

3.4 Posterior Inference
Given the observed data X , our goal is to calculate the
posterior distribution p(W ,H,S, z,π,ψ|X). Since ana-
lytic calculation is intractable, we use Markov chain Monte
Carlo (MCMC) methods as in [23]. Since the acoustic
and language models share only the binary variables, each
model can be updated independently when the binary vari-
ables are given. These models and binary variables are it-
eratively sampled. Finally, the latent variables (chord pro-
gressions) of the language model are estimated by using
the Viterbi algorithm and the binary variables (pitch loca-
tions) are determined by using parameters having the max-
imum likelihood.

3.4.1 Sampling Binary Variables

The binary variables S are sampled from a posterior distri-
bution that is calculated by integrating the acoustic model
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as a likelihood function and the language model as a prior
distribution according the Bayes’ rule. Note that as shown
in Fig. 1, the binary variables S are involved in both acous-
tic and language models (i.e., the probability of each pitch
being used is determined by a chord, and whether or not
each pitch is used affects the reconstructed spectrogram).
The conditional posterior distribution of Skt is given by

Skt ∼ Bernoulli
(

P1

P1+P0

)
, (10)

where P1 and P0 are given by

P1 = p(Skt = 1|S¬k,t,xt,W ,H,π, z, α) (11)

∝ παzk
∏
f

(
X̂¬kft +WfkHkt

)Xft

exp{−WfkHkt},
P0 = p(Skt = 0|S¬k,t,xt,W ,H,π, α)

∝ (1− πzk)α
∏
f

(
X̂¬kft

)Xft

, (12)

where X̂¬kft ≡
∑
l 6=kWflHltSlt denotes the magnitude

at frame t reconstructed without using the k-th basis and
α is a parameter that determines the weight of the lan-
guage model relative to that of the acoustic model. Such a
weighting factor is also needed in ASR. If α is not equal to
one, Gibbs sampling cannot be used because the normal-
ization factor cannot be analytically calculated. Instead,
the Metropolis-Hastings (MH) algorithm is used by regard-
ing Eq. (10) is used as a proposal distribution

3.4.2 Updating the Acoustic Model

The parameters of the acoustic model W h, W n, and H
can be sampled using Gibbs sampling. These parameters
are categorized into those having gamma priors (W h) and
those inverse-gamma chain priors (W n andH).

Using the Bayes’ rule, the conditional posterior distri-
bution ofW h is given by

W h
fk ∼ G

(∑
tXftλftk + ah,

∑
tHktSkt + bh

)
, (13)

where λftk is a normalized auxiliary variable that is cal-
culated with the latest sampled variables Ŵ , Ĥ , and Ŝ,
as:

λftk =
ŴfkĤktŜkt∑
l ŴflĤltŜlt

. (14)

The other parameters are sampled through auxiliary vari-
ables. Since H and GH are interdependent in Eq. (5) and
cannot be sampled jointly, GH and H are sampled alte-
nately. The conditional posterior ofGH is given by

GHkt ∼ IG
(

2ηH , ηH

(
1
Hkt

+ 1
Hk(t−1)

))
. (15)

Similarly, the conditional posteriors of H , GW , and W n

are given by

Hkt ∼ IG
(
2ηH , ηH

(
1

GH
k(t+1)

+ 1
GH

kt

))
, (16)

GWf ∼ IG
(
2ηW , ηW

(
1
Wn

f
+ 1

Wn
f−1

))
, (17)

W n
f ∼ IG

(
2ηW , ηW

(
1

GW
f+1

+ 1
GW

f

))
, (18)

if the observation X is not taken into account. Using the
Bayes’ rule and Jensen’s inequality as in Eq. (13) and re-
garding Eq. (16) as a prior, the conditional posterior con-

sidering the observationX is written as follows: 1

Hkt ∼ GIG
(

2Skt
∑
f Wfk, δH ,

∑
f Xftλftk − γH

)
,

where γH = 2ηH and δH = ηH( 1
GH

k(t+1)

+ 1
GH

kt

). The

conditional posterior of W n can be derived in the same
manner as follows:

W n
fk ∼ GIG (2

∑
tHktSkt, δW ,

∑
tXftλftk − γW ) ,

where γW = 2ηW and δW = ηW ( 1
GW

f+1

+ 1
GW

f

)

3.4.3 Updating the Language Model

The latent variablesZ are sampled from the following con-
ditional posterior distribution:

p(zt|S,π,φ,Ψ) ∝ p(s1, . . . , st, zt), (19)

where π is the emission probabilities, φ is the initial prob-
abilities, and Ψ = {ψ1, . . . ,ψI} is a set of the transi-
tion probabilities from each state. The right-hand side of
Eq. (19) is further factorized using the conditional inde-
pendence over Z and S as follows:

p(s1, . . . , st, zt)

= p(st|zt)
∑
zt−1

p(s1, . . . , st−1, zt−1)p(zt|zt−1), (20)

p(s1, z1) = p(z1)p(s1|z1) = φz1p(s1|πz1). (21)

Using Eqs. (20) and (21) recursively, p(s1, . . . , sT |zT ) can
be efficiently calculated via forward filtering and the last
variable zT is sampled according to zT ∼ p(s1, . . . , sT |zT ).
If the latent variables zt+1, . . . , zT are given, zt is sampled
from a posterior given by

p(zt|S, zt+1, . . . , zT ) ∝ p(s1, . . . , st, zt)p(zt+1|zt). (22)

Since p(s1, . . . , st, zt) can be calculated in Eq. (20), zt is
recursively sampled from zt ∼ p(s1, . . . , st, zt)p(zt+1|zt)
via backward sampling.

The posterior distribution of the emission probabilities
π is given by using the Bayes’ rule as follows:

p (π|S, z,φ,Ψ) ∝ p (S|π, z,φ,Ψ) p (π) . (23)

This is analytically calculable because p (π) is a conjugate
prior of p (S|π, z,φ,Ψ). Let Ci be the number of occur-
rences of chord i ∈ {1 . . . I} inZ and ci ≡

∑
t∈{t|zt=i} st

be a K-dimensional vector that denotes the sum of st un-
der the condition zt = i. The parameters π are sampled
according to a conditional posterior given by

π ∼ Beta (e+ cik, f + Ci − cik) . (24)

The posterior distributions of the transition probabili-
ties ψ and the initial probabilities π are given similarly as
follows:

p(φ|S, z,π,Ψ) ∝ p(z1|φ) p(φ) (25)

p(ψ|S, z,π,φ) ∝∏tp(zt|zt−1,ψzt−1
) p(ψzt−1

). (26)

Since p(φ) and p (ψi) are conjugate priors of p(z1|φ) and
p(zt|zt−1,ψzt−1

), respectively, these posteriors can be eas-
ily calculated. Let ei be the unit vector whose i-th element

1 GIG(a, b, p) ≡ (a/b)
p
2

2Kp(
√
ab)

xp−1 exp(−ax+ b
x

2
) denotes a general-

ized inverse Gaussian distribution.
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is 1 and ai be the I-dimensional vector whose j-th element
denotes the number of transition from state i to state j. The
parameters φ and ψi are sampled according to conditional
posteriors given by

φ ∼ Dir (1I + ez1) , ψi ∼ Dir (1I + ai) . (27)

4. EVALUATION

We report comparative experiments we conducted to eval-
uate the performance of our proposal model in pitch esti-
mation. First, we confirmed in a preliminary experiment
that correct chord progressions and emission probabilities
were estimated from the piano-roll by the language model.
Then, we estimated the piano-roll representation from acous-
tic audio signals by using the hierarchical model and the
acoustic model.

4.1 Experimental Conditions

We used 30 pieces (labeled as “ENSTDkCl”) selected from
the MAPS database [24]. We converted them into monau-
ral signals and truncated each of them to 30 seconds from
the beginning. The magnitude spectrogram was made by
using the variable-Q transform [25]. The 926 × 10075
spectrogram thus obtained was resampled to 926 × 3000
by using MATLAB’s resample function. Moreover, we
used harmonic and percussive source separation (HPSS)
[26] as a preprocessing. Unlike the original study, HPSS
was performed in the log-frequency domain. Median fil-
ter is applied over 50 time frames and 40 frequency bins
each. Hyperparameters were empirically determined as
I = 24, ah = 1, bh = 1, an = 2, bn = 1, c = 2, d = 1, e =
5, f = 80, α = 1300, ηW = 800000 and ηH = 15000.
The emission probabilities are obtained for 12 notes, which
are expanded to cover 84 pitches. In practice, we fixed the
probability of internal transition (i.e. p(zt+1 = zt|zt)) to
a large value (1− 8.0× 10−8) and assumed that the prob-
abilities of transition to a different state follow Dirichlet
distribution as shown in section 3.4.3 We implemented the
proposed method by using C++ and a linear algebra library
called Eigen3. The estimation was conducted with a stan-
dard desktop computer with an Intel Core i7-4770 CPU
(8-core, 3.4 GHz) and 8.0 GB of memory. The processing
time for the proposed method with one music piece (30
seconds as mentioned above) was 15.5 minutes .

4.2 Chord Estimation for Piano Rolls

We first verified that the language model properly esti-
mated the emission probabilities and a chord progression.
As an input, we combined correct binary piano-roll repre-
sentations for 84 pitches (MIDI numbers 21–104) of the
pieces we used. Since each representation has 3000 time-
frames and we used 30 pieces, the input was 84×90000
matrix. We evaluated the precision of chord estimation
as the ratio of the number of frames whose chords were
estimated correctly to the total number of frames. Since
we prepared two chord types for each root note, we treated
“major” and “7th” in the ground-truth chords as “major” in
the estimated chords, and “minor” and “minor 7th” in the

Figure 4. Emission probabilities estimated in the prelimi-
nary experiment. The left corresponds to major chords and
the right corresponds to minor chords.

ground-truth chords as “minor” in the estimated chords.
In evaluation, other chord types were not used in evalua-
tion and chord labels were estimated to maximize the pre-
cision since we estimated chords in an unsupervised man-
ner. Since original MAPS database doesn’t contain chord
information, one of the authors labeled chord information
for each music piece by hand 2 .

The experimental results shown in Fig. 4 shows that ma-
jor chords and minor chords, which are typical chord types
in tonal music, were obtained as emission probabilities.
This implies that we can obtain the concept of chord from
piano-roll data without any prior knowledge. The pre-
cision was 61.33%, which indicates our model estimates
chords correctly to some extent even in an unsupervised
manner. On the other hand, other studies on chord estima-
tion have reported higher score [15, 16]. This is because
that they used labeled training data and that they evaluated
their method with popular music, which has clearer chord
structure than classical music we used.

4.3 Multipitch Estimation for Music Audio Signals

We then evaluated our model in terms of the frame-level
recall/precision rates and F-measure:

R =
∑

t ct∑
t rt
, P =

∑
t ct∑
t et
, F = 2RP

R+P , (28)

where rt, et, and ct are respectively the numbers of ground
truth, estimated and correct pitches at the t-th time-frame.
To cope with the arbitrariness in octaves of the obtained
bases, estimated results for the whole piece were shifted
by octaves and the most accurate one was used for the
evaluation. We conducted a few comparative experiments
under the following conditions: 1) Chords were fixed and
unchanged during a piece (the acoustic model), 2) the lan-
guage model was pre-trained using the correct chord labels
and a correct piano-roll, and the learned emission proba-
bilities were used in estimation (pre-trained with chord),
3) the language model was pre-trained using only a cor-
rect piano-roll, and the learned emission probabilities were
used in estimation (pre-trained without chord). we evalu-
ated the performances under the second and the third con-
ditions by using cross-validation.

As shown in Table 1, the performance of the proposed
method in the unsupervised setting (65.0%) was better than
that of the acoustic model (64.7%). As shown in Fig. 5, the
F-measure improvement due to integrating the language
model for each piece correlated positively with the preci-

2 The annotation data used for evaluation is available on
http://sap.ist.i.kyoto-u.ac.jp/members/ojima/mapschord.zip
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Condition F R P
The integrated model 65.0 67.3 62.8
The acoustic model 64.7 64.7 64.7

Pre-trained w/ chord 65.5 65.3 65.6
Pre-trained w/o chord 65.0 65.5 64.6

Table 1. Experimental results of multipitch analysis for 30
piano pieces labeled as ENSTDkCl.
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Figure 5. Correlation between estimated chord precision
and the improvement of F-measure.

sion of chord estimation for each piece (correlation coeffi-
cient r = 0.33). This indicates that refining the language
model also improves the pitch estimation.

Moreover, as shown in Fig. 6, major and minor chords
like those in Fig. 4 were obtained as emission probabilities
directly from music audio signals without any prior knowl-
edge. This implies that frequently used chord types can
be inferred from music audio signals automatically, which
would be useful in music classification or similarity anal-
ysis. The performance in the supervised setting (65.5%)
was better than the performance obtained in the unsuper-
vised settings. Since there exist published piano scores
with chord labels, this setting is considered to be prac-
tical. Although this difference was statistically insignifi-
cant (standard error was about 1.5%), F-measures were im-
proved for 25 pieces out of 30. Moreover, the improvement
exceeded 1% for 15 pieces. The example of pitch estima-
tion shown in Fig. 7 indicates that insertion errors at low
pitches are reduced by integrating the language model. On
the other hand, insertion errors in total increased in the in-
tegrated model. This is because the constraint on harmonic
partials (shift-invariant) is too strong to appropriately esti-
mate the spectrum of each pitch. As a result, the overtones
that should be expressed by a single pitch are expressed
by multiple inappropriate pitches that do not exist in the
ground-truth.

There would be much room for improving the perfor-
mance. The acoustic model has the strong constraint on
harmonic partials as mentioned above. This constraint can
be relaxed by introducing source-filter NMF [4], which
further decomposes the bases into sources corresponding
to pitches and filters corresponding to timbres. Our model
corresponds the case the number of filters is one, and in-
crement of the number of filters would contribute to ex-
press difference in timbres (e.g., difference between the
timbre of high pitches and that of low pitches). The lan-
guage model, on the other hand, can be refined by intro-
ducing other music theory such as keys. Some methods
that treat the relationship between keys and chords [27],

Figure 6. Emission probabilities learned from estimated
piano-roll. Chord structures like those in Fig. 4 were ob-
tained.

Figure 7. Estimated piano-rolls for MUS-
bk xmas5 ENSTDkCl. Integrating the language model
redeuced Insertion errors at low pitches.

or keys and notes [12], have been studied. Moreover, the
language model focus on reducing unmusical errors such
as insertion errors in adjacent pitches, and is difficult to
cope with errors in octaves or overtones. Modeling tran-
sitions between notes (horizontal relations) will contribute
to solve this problem and to improve the accuracy.

5. CONCLUSION

We presented a new statistical multipitch analyzer that can
simultaneously estimate pitches and chords from music au-
dio signals. The proposed model consists of an acoustic
model (a variant of Bayesian NMF) and a language model
(Bayesian HMM), and each model can make use of each
other’s information. The experimental results showed the
potential of the proposed method for unified music tran-
scription and grammar induction from music audio signals.
On the other hand, each model has much room for perfor-
mance improvement: the acoustic model has a strong con-
straint, and the language model is insufficient to express
music theory. Therefore, we plan to introduce a source-
filter model as the acoustic model and to introduce the con-
cept of key in the language model.

Our approach has a deep connection to language acqui-
sition. In the field of natural language processing (NLP),
unsupervised grammar induction from a sequence of words
and unsupervised word segmentation for a sequence of char-
acters have actively been studied [28,29]. Since our model
can directly infer musical grammars (e.g., concept of chords)
from either music scores (discrete symbols) or music audio
signals, the proposed technique is expected to be useful for
an emerging topic of language acquisition from continuous
speech signals [30].
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