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Abstract— This paper presents an audio-visual beat-tracking
method for an entertainment robot that can dance in synchro-
nization with music and human dancers. Conventional music
robots have focused on either music audio signals or dancing
movements of humans for detecting and predicting beat times
in real time. Since a robot needs to record music audio signals
by using its own microphones, however, the signals are severely
contaminated with loud environmental noise and reverberant
sounds. Moreover, it is difficult to visually detect beat times
from real complicated dancing movements that exhibit weaker
repetitive characteristics than music audio signals do. To solve
these problems, we propose a state-space model that integrates
both audio and visual information in a probabilistic manner.
At each frame, the method extracts acoustic features (audio
tempos and onset likelihoods) from music audio signals and
extracts skeleton features from movements of a human dancer.
The current tempo and the next beat time are then estimated
from those observed features by using a particle filter. Exper-
imental results showed that the proposed multi-modal method
using a depth sensor (Kinect) for extracting skeleton features
outperformed conventional mono-modal methods by 0.20 (F
measure) in terms of beat-tracking accuracy in a noisy and
reverberant environment.

I. INTRODUCTION

Development of entertainment robots that can interact with
humans through music is one of the most attracting research
directions in the field of robotics. Since various kinds of
robots are expected to get into our daily lives in the future,
not only task-oriented robots but also entertainment robots
that people feel familiarity with have been developed. Among
them are a violinist robot [1], a cheerleader robot that can
move around while balancing on a ball [2], and a flutist
robot that can play the flute in synchronization with a melody
played by a human [3]. Since dancing is a form of expression
seen in many cultures, in this paper we focus on music robots
that can dance interactively with humans.

A robot that can dance synchronously with human dancers
needs to adaptively control its movements while recognizing
music and the movements of the dancers. Several dancing
robots have already been developed. Murata et al. [4], for
example, enabled a bipedal humanoid robot to step and sing
in synchronization with musical beats, Kosuge et al. [5]
devised a dancer robot that can predict the next step intended
by a dance partner and move according to the movements
of the partner, and Kaneko et al. [6] developed a humanoid
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Fig. 1. The proposed audio-visual beat-tracking method for music audio
signals accompanied by dancing movements of a human

robot that can generate natural dancing movements by using
a complicated human-like dynamical system.

To synchronize its dancing movements with musical beats,
the robot should be able to perform real-time beat tracking—
i.e., estimate a musical tempo and detect beat times (times
that people are likely to clap)—in a noisy and reverberant
environment. Many beat-tracking methods for music audio
signals have been proposed. Murata et al. [4], for example,
proposed an online method that can quickly follow tempo
changes and is robust to environmental noise. This method,
though, often fails to detect correct beat times for musical
piece having many accented up-beats. Chu and Tsai [7], on
the other hand, proposed an offline beat-tracking method that
tries to detect tempos (periods) from dancing movements. It
is, however, difficult to accurately analyze real musical pieces
with complicated dancing movements because the accuracy
of beat tracking using a single modality is limited.

In this paper, we propose a multi-modal beat tracking
method that focuses on both music audio signals and danc-
ing movements (Fig. 1)*. Audio-visual integration is widely
studied in music information retrieval, and each achieved bet-
ter performance than single-modal methods [8]–[13]. Music
audio signals are recorded by a microphone, and skeleton
information of dancing movements is obtained by using a
depth sensor (e.g., Microsoft Kinect) or a motion capture
system. To extract acoustic features from music audio sig-
nals, we estimate audio tempos and onset likelihoods at each
frame. To extract skeleton features, on the other hand, at each
frame we calculate visual tempo likelihoods that indicates
the likelihoods over possible tempos. We then formulate a
unified state-space model that consists of latent variables
(tempo and beat time) and observed variables (acoustic and
skeleton features). A posterior distribution of latent variables
can be estimated by using a particle filter.

*Demo page: http://winnie.kuis.kyoto-u.ac.jp/members/ohkita/demo/iros2015/
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II. RELATED WORK

This section describes the related work of beat tracking
using audio and visual signals.

A. Beat tracking for music audio signals

Many beat-tracking methods have been proposed for mu-
sic audio signals. Dixon et al. [14], for example, proposed
an offline method based on a multi-agent architecture in
which the agents independently estimate inter-onset inter-
vals (IOIs) of music audio signals and estimate beat times
by integrating the multiple interpretations. Goto et al. [15]
proposed a similar online method using both IOIs and chord
changes as useful clues for detecting beat times. Stark et
al. [16] proposed an online method that combines a beat-
tracking method based on dynamic programming [17] with
another method using a state-space model for tempo esti-
mation [18]. The performance of this method was shown to
tie with those of offline systems. These methods, however,
are not sufficiently robust against noise because clean music
audio signals are assumed to be given. Murata et al. [4]
proposed a real-time method that enables a robot to step and
sing according to musical beats while recording music audio
signals by using an embedded microphone. This method
calculates an onset spectrum at each frame and detects beat
times by calculating the auto-correlation of onset spectra.
Oliveiral et al. [19] proposed an online multi-agent method
using different multi-channel preprocessing strategies (e.g.,
sound source localization and separation) to improve the
robustness of environmental noise.

B. Beat tracking for dancing movements

Several studies have been conducted for analyzing rhyth-
mic information of dancing movements. Guedes et al. [20]
proposed a method that estimates an audio tempo of dancing
movements in a dance movie. This method can be used for
estimating a tempo from periodic movements (e.g., period-
ically putting a hand up and down) under a condition that
other moving objects do not exist in a dance movie. It is
difficult to use this method for complicated movements seen
in real dancing performances. Chu and Tsai [7] proposed an
off-line method that extracts motion trajectories of a dancer’s
body from a dancing movie and then detects time frames in
which a characteristic point stops or rotates. They proposed
a system replacing background music of a dance video by
using this method.

C. Audio-visual beat tracking

There are two main approaches that use both acoustic and
skeleton features for multi-modal tempo estimation and/or
beat tracking. One approach focuses on predefined visual
cues that tell a tempo. Weinberg et al. [11] developed an in-
teractive marimba playing robot called Shimon that performs
beat tracking while recognizing a visual cue (nodding one’s
head to the beat). Petersen et al. [12] proposed a method that
uses a visual cue (waving a hand to control parameters of
vibrato or tempo). Lim et al. [13] developed a robot accom-
panist that follows a flutist. It starts and stops its performance

when it sees a visual cue, and it estimates a tempo by seeing
a visual beat cue (up and down movement of the flute to the
tempo) and listening to the flutist’s notes.

The other approach does not use predefined visual cues.
Itohara et al. [9] proposed an audio-visual beat-tracking method
using both guitar sounds and guitarist’s arm motions. They
formulated a simplified model that represents a guitarist’s
arm trajectory as a sine wave, and integrated acoustic and
skeleton features by using a state-space model. Berman et
al. [10] proposed a beat-tracking method for ensemble robots
playing with a human guitarist. To visually estimate a tempo,
a method similar to [20] was used. This method can estimate
the tempo from a periodic behavior, such as the head’s and
foot’s moving up and down to the music in playing a guitar.

III. AUDIO-VISUAL BEAT TRACKING

This section describes the proposed method of audio-visual
beat tracking that jointly deals with both music audio signals
and skeleton information of dancing movements (Fig. 1).
To extract acoustic features, we use the audio beat-tracking
method [4] that is robust against environmental noise and
change of tempo because in a dance there are various kinds
of loud noise including the sound of footsteps and the voices
of audiences. To extract skeleton features, we propose a
visual tempo estimation method obtained by extending Chu’s
offline method [7] into an online one. Furthermore, our visual
tempo estimation method uses skeleton information in order
to deal with general dances with complex whole-body move-
ments. To integrate acoustic features and skeleton features in
a principled manner, we formulate a probabilistic state-space
model that consists of latent variables (tempo and beat times)
and observed variables (acoustic and skeleton features). A
posterior distribution of the latent variables is estimated by
using a particle filter.

A. Problem Specification

Our goal is to estimate online the current tempo ϕk and the
next beat time θk+1 by using the history of acoustic features
{A1, · · · , Ak} and that of skeleton features {S1, · · · , Sk},
where k indicates the index of the current beat time:

Input: History of acoustic features: {A1, A2, · · · , Ak}
History of skeleton features: {S1, S2, · · · , Sk}

Output: Current tempo: ϕk

Next beat time: θk+1

This estimation step is recursively executed each time the
current time reaches the predicted next beat time. Note that
the acoustic features are extracted from music audio signals
(Section III-B) and the skeleton features are extracted from
dancing movements (Section III-C).

B. Extraction of acoustic features

The acoustic features Ak of the current beat time θk is
a pair of frame-based onset likelihoods Fk(t) over time be-
tween the previous beat time θk−1 and the current beat time
θk and the instantaneous audio tempo Mk at the current
beat time θk, where t is a frame index (a typical frame-shift
interval is 10 msec). To extract these features from a music
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Fig. 2. From top to bottom: a spectrogram of a popular musical piece,
onset vectors, and onset likelihoods.

audio signal y(t), we use an audio beat-tracking method [4].
This method calculates an onset spectrum at each frame and
detects beat times by calculating the autocorrelation of a
sequence of onset spectra. We use this method that is robust
against robot noise and the change of tempo.

1) Onset likelihood: The onset likelihood Fk(t) at frame
t indicates how likely the frame is to include an onset. This
feature can be extracted by focusing on the power increase
around that frame (Fig. 2). The short-time Fourier transform
is first applied to the input audio signal y(t) for obtaining
frequency spectra. The Hanning window is used as a window
function. The obtained spectra are sent to a mel-scale filter
bank that changes the linear frequency scale to the mel-
scale frequency scale, to reduce the computational cost. Let
mel(t, f) be a mel-scale spectra, where f (1 ≤ f ≤ Fω)
represents a mel-scale frequency.

A Sobel filter is then used for detecting frequency bins
with rapid power increase from the spectra mel(t, f). Since
the Sobel filter has commonly been used for extracting edges
from images, it can be applied to a music spectrogram by
regarding it as a image (two-dimensional matrix). The on-
set vectors d(t, f) are estimated by rectifying the output of
the Sobel filter. The onset likelihood Fk(t) is obtained by
accumulating the values of the elements of the onset vector
d(t, f) over frequencies as follows:

Fk(t) =

Fω∑
f=1

d(t, f). (1)

2) Audio tempo: The audio tempo Mk at the current beat
time θk indicates an instantaneous tempo. This feature can be
extracted via pattern matching in the time-frequency domain
for the onset vectors d(t, f). Normalized cross-correlation is
used as a pattern matching function as follows:

R(t, s) =

Fω∑
j=1

Pω−1∑
i=0

d(t−i,j)d(t−s−i,j)√
Fω∑
j=1

Pω−1∑
i=0

d(t−i,j)2
Fω∑
j=1

Pω−1∑
i=0

d(t−s−i,j)2

. (2)

where Pω is a window length for pattern matching and s is
a shift parameter. Let I1 and I2 be shift parameters that take

the top two largest local peaks of R(t, s), respectively. The
audio tempo M(t) at frame t is given by

M(t) =


2In′ if max(|2In′ − I1|, |2In′ − I2|) < δ

3In′ if max(|3In′ − I1|, |3In′ − I2|) < δ

I1 otherwise,

(3)

where In′ = |I1 − I2| and δ is a tolerance parameter. To
avoid the miss, tempo is limited from n′ beats per minute
(BPM) to 2n′ (BPM) (n′ = 90 in this paper). The audio
tempo Mk is given by Mk = M(θk).

C. Extraction of skeleton features

The skeleton feature Sk of the current beat time θk is a
set of visual tempo likelihoods Sk(u) over possible tempo u.
To extract this feature, we used an online version of a visual
tempo estimation method proposed by Chu and Tsai [7].
Although the original method aims to analyze the movements
of characteristic points detected from a dance movie, our
method can deal with the movements of joints of a human
dancer. Let {b1(t), · · · , bJ(t)} be a set of the 3D coordinates
of joints (e.g., neck and hip), where J is the number of
joints. The value of J depends on a device (e.g. Kinect or
a motion capture system) used for analyzing the movements
of a human dancer.

The skeleton information {b1(t), · · · , bJ (t)} is obtained
according to three steps (Fig. 3). Firstly, we estimate time
frames in which some joints stop and turn. This is justified
by the fact that dancers tend to stop or turn their joints at
beat times. Secondly, we make a signal from a discrete set
of the detected frames for each joint. Finally, we obtain the
likelihood of each possible tempo by applying the Fourier
transform to the signals of all joints independently and ac-
cumulating the obtained spectra over all joints.

1) Detection of stopping and turning frames: Stopping
and turning frames of each joint j are estimated from the
latest movements of the joint {bj(t − N + 1), · · · , bj(t)},
where N is the number of the latest frames considered.

Stopping frames are defined as frames at which the moving
distance of the joint takes a local minimum. The moving
distance gj(i) at frame i is given by

gj(i) = ||bj(i+ 1)− bj(i)||. (4)

A set of stopping frames Ist
j is obtained as follows:

Ist
j =

{
argmin
i≤m≤i+n

gj(m)
∣∣∣ t−N + 1 ≤ i < t− n

}
, (5)

where n is a shift length.
Turning frames, on the other hand, are defined as frames

at which the inner product of the moving distances takes a
local maximum. The inner product hj(i) is given by

hj(i) = oT
j,ioj,i+1, (6)

oj,i =
bj(i+ 1)− bj(i)

gj(i)
. (7)

A set of turning frames Itr
j is then obtained as follows:

Itr
j =

{
argmin
i≤m≤i+n

hj(m)
∣∣∣ t−N + 1 ≤ i < t− n

}
. (8)
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2) Signal generation from stopping and turning frames:
Since Ist

j and Itr
j are discrete sets of time points, it is difficult

to directly analyze the periodicities of those sequences. To
make periodicity analysis easy, we instead generate continu-
ous signals by convoluting a Gaussian function with Ist

j and
Itr
j . This enables us to use the Fourier transform.
More specifically, the two signals ystj (t) and ytrj (t) corre-

sponding to Ist
j and Itr

j are given by

ystj (t) =
∑
i∈Ist

j

N (t|i, σ2
y), ytrj (t) =

∑
i∈Itr

j

N (t|i, σ2
y), (9)

where N (x|µ, σ) represents a Gaussian function where x is
a variable and parameters µ and σ correspond to the mean
and standard deviation.

3) Frequency analysis of generated signals: The spectra
ŷstj (f) and ŷtrj (f) are obtained by applying the Fourier trans-
form to the corresponding signals ystj (t) and ytrj (t). At each
frame t, the visual tempo likelihoods S(t, f) that indicates
the likelihoods over possible tempos is calculated by accu-
mulating the amplitude spectra of all joints as follows:

S(t, f) =

J∑
j=1

(|ŷstj (f)|+ |ŷtrj (f)|). (10)

The visual tempo likelihoods Sk(u) of the current beat time
θk are given by Sk(u) = S(θk, fu), where fu is a frequency
corresponding to tempo u.

D. Unified state-space modeling for audio-visual integration

We formulate a state-space model that integrates acoustic
and skeleton features (Fig. 4). A state vector zk is given by
using a tempo ϕk and a beat time θk as follows:

zk = [ϕk, θk]
T . (11)

An observation vector xk, is given by using an audio tempo
Mk, onset likelihoods Fk (acoustic features) and visual tempo
likelihoods Sk (skeleton features) as follows:

xk = [Mk, S
T
k , F

T
k ]T (12)

1) Observation model: We assume the audio tempo Mk

to follow a Gaussian distribution. The visual tempo likeli-
hoods Sk is considered as a probability distribution by being
normalized. Similarly, the onset likelihoods Fk is considered
as the probability distribution by being normalized. Conse-
quently, the observation model is defined as:

p(xk|zk) = p(Mk|zk)p(Sk|zk)p(Fk|zk), (13)

p(Mk|zk) ∝ N (Mk|ϕk, σ
2
M ) + ε, (14)

p(Sk(u = ϕk)|zk) ∝ Sk(u = ϕk), (15)
p(Fk(t = θk)|zk) ∝ Fk(t = θk), (16)

where σM is the standard deviation of Mk and ε is a constant.
2) State transition model: We assume the state vector to

follow a random walk as follows:

p(zk|zk−1) = N (zk|[ϕk−1, θk−1 + b/ϕk−1]
T ,Q), (17)

where Q is the covariance matrix of the process noise and
b is a constant representing the ratio between the inverse of
a tempo and the frame-shift interval.

E. Posterior estimation based on a particle filter

The tempo ϕk and the beat time θk are estimated by using
a particle filter because the visual tempo likelihoods Sk(u)
and the onset likelihoods Fk(t) are not Gaussian distributed.
Here we use sequential importance resampling (SIR) [21]
for efficient particle filtering. The posterior distribution of
the state vector p(zk|x1:k) is approximated by L particles:

p(z
(l)
k |x1:k) ≈ w

(l)
k , (18)

where w
(l)
k is the weight of particle l (1 ≤ l ≤ L).

This estimation consists of the following three stages: state
transition, weight calculation, and state estimation. The pro-
posal distribution is based on the state transition model. Here,
L′ particles selected randomly transit independently from the
state transition model. It prevents significant concentrations
of particles and enables adaptation to tempo changes. The
proposal distribution is defined as

z
(l)
k ∼ q(zk|z(l)

k−1) (19)

∝ N
(
zk

∣∣[ϕk−1, θk−1 + b/ϕk−1]
T ,Q

)
+

L′

L
. (20)

The weight w(l)
k for each particle l is given by

w
(l)
k = w

(l)
k−1

p(z
(l)
k |z(l)

k−1)p(xk|z(l)
k )

q(zk|z(l)
k−1)

. (21)

The observation and state transition probabilities are in Eqs.
(13) and (17). The proposal distribution is in Eqs. (20).

The expected value of the the state vector zk = [ϕk, θk]
T

is obtained by using the weights of particles as follows:

ϕk =

L∑
l=1

w
(l)
k ϕ

(l)
k , θk =

L∑
l=1

w
(l)
k θ

(l)
k . (22)

In resampling, the particles with large weights are replaced
by many new similar particles, whereas those with small
weights are discarded because they are unreliable.
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TABLE I
COMPARED METHODS AND PARAMETER VALUES

Methods
Audio tempo

(acoustic feature)
Visual tempo likelihoods

(skeleton feature)
Onset likelihoods
(acoustic feature) σϕ σθ σM

Proposed
(MotionCapture data)

(Kinect data) ✓ ✓ ✓ 2.5
1.0

0.2
0.1

3.0
2.0

Without visual tempo likelihoods ✓ ✓ 2.0 0.1 0.5
Without audio tempo ✓ ✓ 2.5 0.1 −

IV. EXPERIMENTAL EVALUATION

This section reports a comparative experiment conducted
to evaluate the performance improvement of the proposed
audio-visual beat-tracking method over mono-modal (audio-
only or visual-only) methods 1.

A. Experimental conditions

The five sessions were obtained from the dance motion
capture database released by the university of Cyprus (54
joints, about 30 frames per second (FPS)) [22]. In addition,
we recorded the dancing movements of a female dancer by
using a Kinect Xbox 360 depth sensor (15 joints, about 20
FPS). There were eight sessions of dances to popular music.
The distance between the Kinect sensor and the dancer was
about 2.5 meters. The whole body of the dancer was captured
by the Kinect sensor (Fig. 5). Audio signals of dance music
(noisy live recordings) were played back and captured by a
microphone with a sampling rate of 16 kHz and a quantiza-
tion of 16 bits. The experiment was conducted in a room
with a reverberation time (RT60) of 800 msec.

We compared the proposed method with the conventional
audio beat-tracking method [4] and two methods that use a
subset of the proposed features. Since our method uses three
types of observations: an audio tempo, visual tempo likeli-
hoods, and onset likelihoods, we compared with a method
without the observation of the audio tempo Mk and a method
without that of the visual tempo likelihoods Sk(u) (Tab. I).
We ran the audio beat-tracking algorithm implemented in the
robot audition software called HARK [23]. The parameters
were the default settings of HARK. With the frame rate of
the data defined as tfps, the parameters of our visual tempo
estimation method were set as follows: N = 20tfps, n =
60tfps/180. The parameters of the particle filter were set
as follows: L = 1000, ε = 0.02, and b = 60. The other
parameters were determined experimentally (Tab. I), here
Q =

[
σ2
ϕ 0

0 σ2
θ

]
.

The error tolerance between an estimated beat time and a
ground-truth beat time was 100 msec, because we feel that
the two sounds whose onset times differ by less than 100
msec are played at the same time [24]. Based on this, we
calculated the precision (rp = Ne/Nd), the recall (rr =
Ne/Nc) and the F-measure (2rprr/(rp + rr)). Here, Ne,
Nd, and Nc correspond to the numbers of correct estimates,
whole estimates, and correct beats. We estimated thirty times
for each data and evaluated the average of them because

1Although a robot danced with estimated beats in the demo video, this
experiment evaluated the proposed method without any enbodied robots.

the estimation results depend on random initialization of a
particle filter.

B. Experimental results

The experimental results showed that the proposed method
always outperformed the audio beat-tracking method (Fig. 6).
In addition, the proposed method was more accurate than the
other methods on average. Consequently, the effectiveness of
the proposed method was verified.

We discuss cases in which the results of the method with-
out an audio tempo Mk of acoustic features had consider-
ably lower scores than those of the method without visual
tempo likelihoods Sk(u) of skeleton features (Kinect data
No. 4 and No. 6). In these cases, the results obtained by the
proposed method had lower scores than the method without
visual tempo likelihoods Sk(u). The visual tempo estimation
method failed in these cases because it was difficult to detect
the stopping and turning frames of joints from dances in
which the hands and feet moved very little. The average
results for the Kinect data had considerably lower scores
than those for the motion capture data. This is because the
number of joints used for the Kinect data was less than that
used for the motion capture data and because the Kinect data
had a lot of noise.

Fig. 7 shows three examples of the experimental results. In
Fig. 7-(a) and (b), the proposed method estimated a correct
tempo using an audio tempo Mk and visual tempo likeli-
hoods Sk(u). In Fig. 7-(c), as was mentioned earlier, al-
though a visual tempo estimation method failed, the proposed
method estimated a correct tempo using acoustic features.
To solve this problem, we will introduce a high-pass filter
to reduce noise, and we have to integrate error handling for
occlusions into our system.

V. CONCLUSIONS AND FUTURE WORK

We developed an audio-visual beat-tracking method for
an entertainment robot that can dance in synchronization
with music and human dancers. The proposed method, which
deals with both music audio signals and skeleton information
of dancers, is designed to be robust to noise and reverbera-
tion. To extract acoustic features from music audio signals,
we estimate an audio tempo and onset likelihoods at each
frame. To extract skeleton features, on the other hand, we
calculate visual tempo likelihoods. We then formulate a state-
space model that consists of latent variables (tempo and
beat times) and observed variables (acoustic and skeleton
features). The posterior distribution of the latent variables is
estimated by using a particle filter.
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(b) Kinect data
Fig. 6. Experimental results.
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(a) Example of estimation (motion capture data No. 4)
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(b) Example of estimation (Kinect data No. 3)
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(c) Example of estimation (Kinect data No. 6)

Fig. 7. Examples of beat estimation (blue: estimation results). The figures
above show the results of tempo estimation (green: audio tempo, gray:
ground truth, color depth: visual tempo likelihood). The figures below show
the errors of beat time estimation.

We plan to improve the accuracy of visual tempo esti-
mation for the Kinect data. Furthermore, when microphones
attached to a robot are used, the music audio signals con-
tain self-generated noise. Semi-blind independent component
analysis [25] is a promising solution to cancel the noise and
it was actually used by Murata et al. [4]. To develop a robot
that can dance with humans, we plan to conduct subjective
experiments using a real dancing robot.
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