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Abstract
This study investigates the characteristics of backchannels
showing the entrainment to the interlocutor’s speech. The
prosodic features of the dialogues of attentive listening are ana-
lyzed to describe how the prosody of Japanese backchannels is
affected by the preceding interlocutor’s utterance. We adopt a
support vector regression (SVR) to model the relationships be-
tween the prosodic features of backchannels and those of the
preceding utterances. As a result, we found an interrelationship
between the different types of features; in particular, the F0 of
backchannels is highly correlated with the power of the preced-
ing utterance. The regression analyses show that the combina-
tion of prosodic features of the preceding utterances achieves
good prediction of both the F0 and power of backchannels. The
findings of this study can be applied to the automatic generation
of backchannels for spoken dialogue systems to show empathy
and facilitate user’s speech.
Index Terms: dialogue, backchannel, entrainment, spoken dia-
logue system, prosody

1. Introduction
Backchannels in conversations play critical roles in encouraging
human-to-human and human-to-robot interactions [1]–[9]. Ver-
bal backchannel is characterized by its function of continuing
the interlocutor’s speech. It is defined by brief utterances made
near the end of the speaker’s turn, responding without disrupt-
ing the continuity of the speaker’s turn. Listeners can facilitate
the speaker’s speech by placing backchannels, which show un-
derstanding and empathy. Fluent speech is accompanied by ap-
propriate backchannels [1]–[5]; therefore, the generation of ef-
fective backchannels is required to develop autonomous spoken
dialogue systems such as virtual agents and humanoid robots.

Backchannels have been widely investigated in a variety of
studies, some of which aim to reveal the characteristics of hu-
man conversations, whereas others are applied to spoken dia-
logue systems [6]-[14]. Most studies on the automatic predic-
tion of backchannels have been focused on predicting the timing
or form of backchannels [14]-[16]. Other studies used prosodic
features to detect backchannels of human speakers in conversa-
tional data [17][18].

Entrainment is known as a phenomenon reflecting the suc-
cess of a conversation or an ongoing collaborative task. When
entrainment occurs, speakers and their interlocutors speak sim-
ilarly in terms of acoustic, prosodic, and lexical features.

Backchannels and their preceding utterances exhibit en-
trainment similarly to other dialogue behaviors [22]-[24]. These
studies revealed correlations between prosodic features be-
tween backchannels and interlocutors’ preceding utterances.
Backchannels correlate with prior utterances in terms of pitch,

power, and vocal quality (e.g., harmonic-to-noise ratio (HNR),
jitter, or shimmer) [23][24]. On the basis of these findings, spo-
ken dialogue system could effectively facilitate a conversation
by providing entrained backchannels to users.

The above studies investigated the relationship of the same
kinds of prosodic/acoustic features of backchannels and an
interlocutor’s speech. However, a few studies on entrain-
ment investigated the correlation between the different types
of prosodic features. Moreover, only a few studies made
prediction of following backchannels with satisfactory perfor-
mance. Therefore, in this study, we investigate the inter- and
intra-relationship between the fundamental frequency (F0) and
power. It is expected that the correlation analyses of these
prosodic features can contribute to the development of spoken
dialogue systems that produce naturally empathetic and syn-
chronized backchannels.

In this paper, firstly, we describe the dataset used for the
analyses and its recording configurations. In the next section,
the extraction of prosodic features and adopted statistical mod-
els are presented. Then, we present the results of the correla-
tion analyses and prediction performance of prosodic features
of backchannels. Finally, we discuss and conclude the observed
phenomena related to entrainment and the feasibility of future
application to spoken dialogue systems.

2. Dataset

We used a Japanese conversational speech corpus provided by
the JST ERATO project, which consists of spoken dialogue via
Wizard of Oz using android ERICA [25]. The conversation task
was one-on-one attentive listening, in which the participant in
the role of a speaker told his/her experiences and impressions
to a listener. In this corpus, 31 of 59 dialogue sessions were
conducted by female speakers. The talk topics were the mem-
ories of food or travel he/she enjoyed and each session lasted
approximately eight minutes.

Four human operators, who are actors and are not among
the 59 participants, played the role of a listener while tele-
operating the android robot, and were instructed to respond
using “attentive listening,” which entailed receptively listen-
ing to the participants’ stories. They were required to provide
backchannels and ask probing questions about. We analyzed
only the pairs of a listener’s backchannel and the user’s preced-
ing utterance. All speech data were recorded at a sampling rate
of 16 kHz, and the quantization bit was 16.
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Table 1: Statistics of prosodic features.

Statistic F0 power

Mean meanf meanp
Median medf medp

Standard deviation (SD) SDf SDp

Interquartile range (IQR) IQRf IQRp
Maximum value maxf maxp
Minimum value minf minp

Slope of the first-order regression line slopef slopep

3. Methods
3.1. Backchannels

In this study, we analyzed three types of response backchannels,
namely, un (yeah), its repetition un-un, and hai (yes), which
most frequently occur in Japanese daily conversations. Hai pro-
vides a more polite impression to listeners than un. The repe-
tition of hai (hai-hai) was excluded from the analyses because
of its impoliteness and low frequency of use. The total num-
ber of observed un, un-un, and hai were 2906, 566, and 1612,
respectively in all sessions.

The speech data were transcribed manually and split into
long utterance units (LUUs) [26] by an expert labeler. An LUU
is a unit of utterances and approximately corresponds to a sin-
gle sentence in written texts. The labeled information includes
whether each LUU is a backchannel or a filler and the type of
dialogue acts (DA). We differentiate labeled backchannels from
non-backchannel utterances, such as un to show agreement by
using criteria that exclude responses to questions.

3.2. Analyzed Speech Window

We examined four different window lengths to analyze the
user’s preceding utterances: one, two, four, and eight seconds.
Referring to a study on global synchrony using 16-sec slid-
ing windows [27], we chose a shorter duration to capture local
prosody entrainment.

3.3. Prosodic Feature Extraction

We extracted F0 and power of each frame using SVTool [28].
The width and step of the sliding frames were 32 ms and 10
ms, respectively. The F0 extraction algorithm was based on
the peak search of the autocorrelation of linear predictive cod-
ing (LPC) residual error signals. Power was calculated from
the root-mean-square (RMS) values in dB of each frame. The
logarithm of F0 values was calculated for each voiced frame.

We normalized the log F0 and power by subtracting the
within-session mean value to compensate individual variations
of vocal pitch and the difference of the distances to the micro-
phone. Thus, the analyzed log F0 and power can be considered
relative amounts throughout each speaker’s session.

3.4. Statistics of Prosodic Features

We calculated seven types of statistics of log F0 and power as
representative values as shown in Table 1. We used median val-
ues in addition to mean values because the former is sensitive
to outliers. Mean values can be affected by F0 extraction er-
ror and power during silent intervals. When the relationship
between observed prosodic features (F0 and power) and time
frame index is regressed by Equation (2), the slope of the first-

Figure 1: Flow of feature extraction

order regression is defined as a by Equation (1).

xi = ati + b+ ϵi, (1)

a =
Σn

i=1 (xi − x̄) (ti − t̄)

Σn
i=1 (ti − t̄)2

, (2)

b = x̄− at̄, (3)

where yi, ti, and ϵi represent a log F0 or power value, time, and
residual at i-th frame, respectively. x̄ and t̄ represent a mean
prosodic features, (log F0 or power) and mean time-frame in-
dex, respectively. In the speech segment of backchannels, the
median and SD of log F0 and power were also calculated to in-
vestigate the correlation with the preceding utterances. These
statistics were chosen for the future application to automatic
control of backchannels of a dialogue system. Figure 1 shows
an outlook of the prosodic feature analyses.

3.5. Analysis Methods

We conducted a correlation analysis between each single
prosodic feature of backchannels and that of the preceding ut-
terance. Then, we used support vector regression (SVR) to pre-
dict the prosodic features of backchannels. Suppose that a set
of observations and response variables xn and yn are given as
training data, and a task to obtain the following linear model
equation.

f(x′) = βx+ b (4)

The task to find the f(x) for which the value of the norm (β′β)
is minimized is formalized as a convex optimization problem
that minimizes:

J(β) = β′β (5)

This optimization problem is approximated by the following
Lagrangian dual formalization, which introduces non-negative
multipliers αn, α

∗
n for each observation xn.

min
α,α∗

1

2
(α− α∗)

T Q (α− α∗)

+ϵ′Σl
i=1 (α+ α∗) + Σl

i=1yi (α− α∗)

s.t. : 0 ≤ αi, α
∗
i ≤ C, (i = 1, . . . , l) ,

Σl
i=1 (αi − α∗

i ) = 0,

(6)

where C represents the upper bound, Q represents a l × l-
dimensional semi-definite matrix. The parameter ϵ′ was set to
0.1 in this study. The components of Q is defined as

Qi,j ≡ K (xi, xj) , (7)

where K (xi, xj) ≡ ϕ(xi)
Tϕ(xj) represents a kernel. We used

a radial basis function kernel defined in Equation (8), where u
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Table 2: Spearman’s rank sum correlation coefficient between
prosodic features of backchannels and preceding interlocutor’s
utterances. The analysis window is set to eight seconds here.
Only the coefficients of significant correlation are shown.

Type Feature medf maxf medp maxp

un

F0 med. -0.12 n.s. 0.26 0.32
F0 SD -0.08 n.s. 0.14 0.16

Power med. n.s. 0.14 0.24 0.31
Power SD n.s. 0.11 0.19 0.25

unun

F0 med. -0.30 n.s. 0.27 0.35
F0 SD -0.22 n.s. 0.24 0.30

Power med. -0.25 0.13 0.25 0.33
Power SD -0.13 0.12 n.s. 0.16

hai

F0 med. n.s. 0.14 0.11 0.11
F0 SD n.s. n.s. 0.09 0.09

Power med. -0.08 0.16 0.64 0.64
Power SD -0.13 0.09 0.56 0.55

and v are given as a sampled vectors in the input space:

K(u,v) = exp (−γ |u− v|) . (8)

The parameter γ was set to 1.0 in this study.
The prediction accuracy was evaluated in terms of mean

absolute error (MAE) between the predicted and observed val-
ues of the prosodic features. Starting from one feature, we
gradually increased the number of features and compared the
MAEs of all possible combinations of prosodic feature statis-
tics of preceding utterances to find the best set of features. The
MAE was calculated by averaging the results of five-fold cross-
validation. To prevent overfitting, we stopped under the crite-
ria that the improvement of the predicted residual error sum of
squares (PRESS) was below a threshold.

4. Results
4.1. Correlation analysis

Table 2 shows the correlation coefficients between the prosodic
features of backchannels and those of the user’s preceding utter-
ance. The correlation tests were conducted (p < 0.05) with p-
values adjusted by the Bonferroni method controlling the false
discovery rate (FDR). It is observed that many prosodic features
of backchannels had a larger correlation with power-related fea-
tures (medp, maxp) of the preceding utterances than with F0-
related features (medf , maxf ).

4.2. Support Vector Regression

Tables 3–5 show the selected features and their estimation accu-
racy in terms of the correlation coefficient between the observed
and predicted values. The MAE between the observed and pre-
dicted values are also presented. Note that the MAEs were
calculated based on the normalized value with within-session
mean and SDs. Table 3 gives a comparison of analysis window
lengths of 1, 2, 4, and 8 seconds for “un”, and it is shown that 8
seconds yielded the best accuracy.

In Table 4, we also compared three settings for feature se-
lection to evaluate the contribution of F0 and power for predic-
tion for “un”: selecting from all features (Setting 1), selecting
from the F0-related features (Setting 2), and selecting from the
power-related features (Setting 3). We used the analysis win-

dow length, the eight-second because it performed best among
the four settings. We observed that both F0 and power were
selected from candidates in Setting 1. As a result, prediction
of Setting 1 obtained better performance than Setting 2 and 3.
Moreover, Setting 3 showed higher accuracies and lower MAEs
than Setting 2.

Table 5 shows the results for all types of backchannels. It is
confirmed that both F0 and power features are used to predict
most of the features of the backchannels. The prediction accu-
racy is improved from the case using the same type of features
only.

5. Discussions
The correlation between the median of log F0 of backchannels
and the median of log F0 of the preceding utterance was low.
This result is not consistent with the similarity of the mean of
F0 between backchannels and its preceding utterances shown
by Heldner et al. conducted on the analyses of English speech
corpus [23]; however, a similar result was observed in a previ-
ous study conducted on Japanese datasets [29].

The difference in the accentual systems may cause incon-
sistent results between English and Japanese. In English, F0

correlates with power [30] because of the influence of the
stress-accent system. On the other hand, because Japanese
has a pitch-accent system, linguistic information can affect
the mean/median of log F0. Comparing the normalized mean
within the whole session, we found that the power of backchan-
nels is distributed in a significantly narrow range than that of
log F0 (p < 0.05).

The F0-related features of backchannels were weakly cor-
related with the SD of log F0 of the preceding utterances.
However, a higher correlation was observed between the F0-
related features of backchannels and the power-related features
of the prior utterance. The power-related feature improved the
prediction performance of prediction of F0-related features of
backchannels from the case using only F0-related features.

On the other hand, the power-related features of backchan-
nels were correlated more highly with the power-related fea-
tures of the preceding utterances than those of F0-related fea-
tures. The results of SVR indicate that the use of F0-related
features does not highly contribute to the performance with re-
gard to un and un-un. This may be because the listener produces
backchannels according to the power of the speaker’s voice. In
addition, the listener may align with hot spots or the climax of
the story behind the change of power. We also note that the
maximum value of the power of the preceding utterances par-
ticularly has an important influence because it contributes to the
performance of the SVR.

Using these results, we have implemented the control mod-
ule of backchannel prosody for our spoken dialogue system to
encourage the user’s talk in real settings such as installation in a
public space, elderly care facilities, and rehabilitation facilities.

6. Conclusions
In this study, we here investigated the relationship between
the prosodic features of backchannels and their preceding ut-
terances. The interrelationship between different prosodic fea-
tures, F0 and power, was observed beyond the local synchrony
of the same prosodic feature. We found that the power-related
features of the interlocutors’ preceding utterance remarkably
affect the control of both F0 and power of the backchannels.
Future work will include the evaluation of the effectiveness of
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Table 3: Pearson’s correlation coefficient between the predicted and observed prosodic features of backchannels. The analysis window
length was set to 1, 2, 4, and 8 sec.

Analysis window length

1 sec 2 sec 4 sec 8 sec
Predictee MAE r MAE r MAE r MAE r

un

F0 med. 0.70 0.38 0.66 0.48 0.63 0.53 0.61 0.56
F0 SD 0.20 0.16 0.20 0.18 0.20 0.22 0.20 0.24

Power med. 0.29 0.35 0.28 0.44 0.27 0.51 0.23 0.55
Power SD 0.12 0.23 0.11 0.38 0.11 0.40 0.11 0.44

Table 4: Pearson’s correlation coefficient between the predicted and observed prosodic features of backchannels. The feature selection
was conducted under the three settings: (1) Setting 1: selecting from all of 14 features, (2) Setting 2: selecting from seven F0-related
features, (3) Setting 3: selecting from seven power-related features. The analysis window length was set to 8 sec.

Setting 1 Setting 2 Setting 3
Predictee Selected features MAE r Selected features MAE r Selected features MAE r

un

F0 med. mean f SD f medp 0.61 0.56 medf SD f max f 0.7 0.39 medp 0.66 0.48
F0 SD mean f medp 0.20 0.24 mean f max f 0.2 0.17 medp SD p 0.2 0.21

Power med. mean f SD f medp max p 0.23 0.55 mean f SD f 0.3 0.33 medp SD p max p 0.28 0.47
Power SD mean f SD f mean p 0.11 0.44 mean f max f 0.11 0.28 med p 0.11 0.34

Table 5: Pearson’s correlation coefficient between the predicted and observed prosodic features of backchannels. The feature selection
was conducted with selection from all features (same as Setting 1 in Table 4) and selection from the same type of features (Setting 2 for
prediction of F0-related features, and Setting 3 for prediction of power-related features). The analysis window length was set to 8 sec.

Selected from all features (Setting 1) Selected from the same type of features (Setting 2 or 3

un

Predictee Selected features MAE r Selected features MAE r

F0 med. meanf SDf medp 0.61 0.56 medf SDf maxf 0.7 0.39
F0 SD meanf medp 0.2 0.24 meanf maxf 0.2 0.17

Power med. meanf SDf medp maxp 0.23 0.55 medp SDp maxp 0.28 0.47
Power SD meanf SDf meanp 0.11 0.44 medp 0.11 0.34

unun

F0 med. medf maxf medp 0.59 0.67 medf IQRf maxf 0.74 0.49
F0 SD meanf medp 0.15 0.48 minf 0.16 0.31

Power med. meanf medf medp 0.18 0.55 medp 0.21 0.43
Power SD minf medp 0.08 0.30 medp 0.08 0.27

hai

F0 med. meanf meanp SDp minp 0.80 0.31 maxf 0.91 0.16
F0 SD IQRp 0.24 0.08 minf 0.24 0.03

Power med. meanf maxp minp 0.24 0.76 minp 0.27 0.77
Power SD meanp 0.11 0.61 meanp 0.11 0.61

the proposed backchannel prosody control method from the per-
spective of how actively elicit the user’s talk.
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[22] U. D. Reichel, K. Mády, and J. Cole,“Prosodic entrainment in di-
alog acts,” arXiv preprint arXiv:1810.12646, 2018.

[23] M. Heldner, Je. Edlund, and J. B. Hirschberg, “Pitch similarity in
the vicinity of backchannels,” Poce. Interspeech 2010. 2010.
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