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ABSTRACT

This paper addresses the problem of speaking rate in
large vocabulary spontaneous speech recognition. In spon-
taneous lecture speech, the speaking rate is generally fast
and may vary a lot within a talk. We also observed different
error tendencies for fast and slow speech segments. There-
fore, we first present a speaking-rate dependent decoding
strategy that applies the most adequate acoustic analysis,
phone models and decoding parameters according to the
speaking rate. Several methods are investigated and their
selective application leads to accuracy improvement. We
also propose to make use of speaking-rate information in
speaker adaptation, in which the different adapted models
are set up for fast and slow utterances. It is confirmed that
the method is more effective than normal adaptation.

1. INTRODUCTION

Under the Science and Technology Agency Priority Pro-
gram in Japan (1999-2004)[1], a large scale spontaneous
speech corpus is being collected and we have started exten-
sive studies on large vocabulary spontaneous speech recog-
nition. Our main goal is the automatic transcription of live
lectures such as oral presentations in conferences.

In acoustic modeling of spontaneous speech, the speak-
ing rate, especially fast speech, is considered as one of the
most significant causes of degradation. Fast speaking often
causes incomplete articulation, thus poor acoustic match-
ing. The spectral patterns change and moreover the phone
itself may disappear. There have been studies that consider
the factor of speaking rate in acoustic modeling[2][3][4].
We also explored the approach[5].

On the other hand, it has been observed that there are
frequent changes of speaking rate in a single lecture pre-
sentation. These changes cause significant problems when
decoding with uniform models and parameters. Actually,
the tendency of recognition errors is different for fast ut-
terances and slow utterances. It is also regarded that spec-
tral variation due to the fast speaking rate is dependent on

Table 1. Test-set of lectures

#words duration WER
(min.) (%)

A01M0035 (AS22) 6294 28 41.1
A01M0007 (AS23) 4391 30 27.6
A01M0074 (AS97) 2508 12 27.5
A05M0031 (PS25) 5372 27 35.3
A02M0117 (JL01) 9833 57 37.3

KK99DEC005 (KK05) 6527 42 35.3
A03M0100 (NL07) 2644 15 32.0
A06M0134 (SG05) 4460 23 41.4

YG99JUN001 (YG01) 2759 14 38.5
YG99MAY005 (YG05) 3108 15 32.8

total 47896 263 35.8

speakers. Most of the previous studies deal with the speak-
ing rate in speaker-independent acoustic modeling. In this
paper, we present a decoding strategy depending on the cur-
rent speaking rate and also a model adaptation scheme for
both speakers and speaking rate.

2. DATABASE AND TASK

The Corpus of Spontaneous Japanese (CSJ) currently devel-
oped by the project consists of a variety of oral presentations
at technical conferences and informal monologue talks on
given topics.

For language model training, all transcribed data (as of
June 2001) are used. There are 612 presentations and talks
by distinct speakers. The text size in total is 1.48M words
(=Japanese morphemes). As for acoustic model training,
only male speakers are used in this work. We use 224 pre-
sentations that amount to 37.9 hour speech.

The test-set for evaluation consists of ten lecture presen-
tations specified in Table 1. Many of them are invited lec-
tures at technical meetings, thus relatively longer than sim-
ple paper presentations. They were given by experienced
lecturers who did not prepare drafts.
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Fig. 1. Phone duration distribution of CSJ and JNAS corpus

3. BASELINE SYSTEM

Acoustic models are based on continuous density Gaussian-
mixture HMM. Speech analysis is performed every 10 msec
and a 25-dimensional parameter is computed (12 MFCC +
12� MFCC + � Power).

The number of phones used is 43, and all of them are
modeled with left-to-right HMM of three states and no
state-skipping transitions. We trained context-dependent
triphone models. Decision-tree clustering was performed
to set up 2000 shared-states. We also adopt PTM (pho-
netic tied-mixture) modeling[6], where triphone states of
the same phone share Gaussians but have different weights.
Here, 129 codebooks of 128 mixture components are used.

We built a lexicon of 19158 words from the training cor-
pus, and then made a trigram language model. It realizes
coverage of 97% and test-set perplexity of 135. We use the
large vocabulary speech recognition decoder Julius rev.3.1
that was developed at our laboratory[7].

The average word error rate with the baseline system is
35.8%. The rate for each speaker is listed in Table 1.

4. ANALYSIS ON SPEAKING RATE

4.1. Phone Duration Distribution

Distribution of phone duration in lecture speech (CSJ - lec-
ture corpus: 35 hours) and read speech (JNAS - newspaper
corpus: 40 hours) is plotted in Figure 1. Phone duration
is estimated with Viterbi alignment. As we use three-state
phone HMMs without state-skipping, the minimum dura-
tion is three frames (=30 msec). Many segments in CSJ data
may have shorter duration, but are forcedly aligned with
three frames. This may have caused a serious mis-match.
Moreover, fast speaking rate suggests that these segments
are poorly articulated and cause problems in recognition.
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Fig. 3. Relation of actual and estimated speaking rate

4.2. Relation with Recognition Errors

The relationship between the word error rate and speaking
rate is plotted for the test-set. Speaking rate is defined as
the mora count divided by the utterance duration (sec). The
utterances are automatically segmented from the recorded
materials based on pauses in pre-processing, thus they do
not necessarily match the linguistic sentences. The total
number of utterances in the test-set is 2517.

In Figure 2, the breakdown of recognition errors is
shown for each speaking rate. It is confirmed that faster
utterances are generally harder for recognition. Moreover,
we observe different tendencies in the errors according to
the speaking rate. In fast utterances, substitution errors are
increased as well as deletion errors. On the other hand, there
are many insertion errors in slow segments.

4.3. Automatic Estimation of Speaking Rate

We also implement automatic estimation of the speaking
rate. Decoding with a phonotactic syllable constraint and
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Table 2. Word error rate with different decoding according to speaking rate (%)

actual speaking rate -5 5-6 6-7 7-8 8-9 9-10 10- average
(#utterances) (433) (434) (596) (435) (343) (161) (115) (2517)

baseline 38.7 35.5 34.1 34.1 34.7 39.9 46.4 35.8
1. analysis frame 39.7 34.5 33.5 33.1 32.8 38.3 43.9 34.7

2. skipping transition 37.7 34.0 33.4 32.8 34.2 39.3 45.2 34.8
3. syllable model 40.4 35.4 33.8 34.1 33.4 38.9 43.8 35.3

1.+2. 41.0 36.0 34.9 34.7 34.7 39.6 44.0 36.2
1.+3. 44.0 38.2 35.6 34.5 34.0 37.6 33.5 36.5
2.+3. 39.5 35.5 33.7 33.7 33.9 37.2 43.0 35.1

1.+2.+3. 45.7 39.3 36.6 35.1 33.8 38.0 42.1 37.1
4. insertion penalty 35.7 32.7 33.6 35.3 37.2 44.2 49.9 36.3

best one selected [oracle] 35.7 32.7 33.4 32.8 32.8 38.3 43.9 34.1

selected with estimated speaking rate 37.4 33.6 33.3 33.1 33.6 39.4 44.2 34.6

phone models is performed for mora counting. Figure 3
plots the relation between the actual and estimated speaking
rate. There is high correlation between the two: the correla-
tion coefficient is 0.74. The result verifies the feasibility of
speaking rate estimation.

5. SPEAKING-RATE DEPENDENT DECODING

Based on these analyses, we propose applying different de-
coding methods according to the speaking rate within the
multiple-pass search framework. The speaking rate in the
current speech segment is estimated in the first pass. Then,
the most adequate acoustic analysis, phone models and de-
coding parameters are applied.

Specifically, the following processings are investigated.
The first three are intended for fast speech and the last one
is for slow speech.

(1) Shorter frame length and shift
To cope with fast speech segments, where spectral pat-

tern changes rapidly, the frame length and shift for spectral
analysis are shortened. After preliminary experiments, we
set the frame length of 20ms and the shift of 8ms from the
baseline of 25ms and 10ms.

(2) State-skipping transitions in phone models
Another way to cope with fast speech is to add state-

skipping transitions in phone models. It allows flexible
matching with less than three frames.

(3) Use of syllable models
Since not a few phone segments may disappear, we

model them with syllables of a phone sequence. We se-
lect syllables by considering both their duration and training
data amount[5].

(4) Use of different insertion penalty
For slow speech segments, a larger word insertion

penalty is used in order to suppress insertion errors.

These techniques and their combinations are evaluated
on the test-set. They are compared with the baseline system
that adopts uniform decoding. The recognition results are
listed in Table 2.

For fast speech segments, all proposed methods (1,2,3)
are shown to be effective and improve the overall accuracy.
Combinations of them have effect on the very fast speech
(9 mora/sec or faster), but result in the increase of errors in
slow speech, which cancel this effect. For slow utterances,
the use of a severe insertion penalty reduces errors as ex-
pected.

Then, a selective application of these methods according
to the speaking rate is implemented, as specified with bold
font in Table 2. The speaking rate is classified into three
categories based on the experimental result. If the speaking
rate is known and the best techniques are chosen accord-
ingly (oracle case), the overall accuracy could be improved
by 1.7% absolute. In actual, we estimate the speaking rate
with a syllable constraint and apply the dedicated decoding
methods in the second pass. This strategy achieves improve-
ment of 1.2% absolute (last row of Table 2).

6. SPEAKING-RATE DEPENDENT ADAPTATION

Next, we introduce a speaker adaptation technique based on
MLLR[8]. Since lecture speech has long duration (large
data) per speaker, the unsupervised adaptation scheme
works very well. First, we make phone transcriptions for
the test utterances using recognition results with the base-
line speaker-independent model. Using these labels, MLLR
adaptation of Gaussian means of the acoustic model is ap-
plied and a speaker-adapted model is generated (adap-all-
1). Using the new recognition results with the adapted
model, this process is iterated (adap-all-2). The first adap-
tation reduced the error rate from 35.8 to 31.8%. The second
iteration brought further improvement of 0.6%. For refer-
ence, we could get an error rate of 29.6% with the super-
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Table 3. Word error rate with speaker and speaking-rate adapted models (%)

actual speaking rate -5 5-6 6-7 7-8 8-9 9-10 10- average
(#utterances) (433) (434) (596) (435) (343) (161) (115) (2517)

baseline 38.7 35.5 34.1 34.1 34.7 39.9 46.4 35.8

adap-all-1 33.3 31.3 30.0 30.5 30.8 36.1 44.8 31.8
adap-all-2 31.4 30.3 29.0 29.9 30.6 36.5 45.4 31.2
adap-fast 31.9 30.3 29.3 29.7 30.2 35.5 43.1 31.0
adap-slow 31.0 30.1 28.9 30.6 31.0 35.5 45.0 31.2

adap-fast + adap-slow [oracle] 31.0 30.1 28.9 29.7 30.2 35.5 43.1 30.8

selected with estimated speaking rate 31.4 29.9 29.1 29.9 30.1 35.5 43.1 30.9

vised (oracle) adaptation using the correct transcription of
test utterances.

In this process, we take the factor of speaking rate into
account, since acoustic patterns in fast segments and slow
segments are different even for the same speaker. Specifi-
cally, we perform MLLR adaptation separately for fast seg-
ments and slow segments. The adaptation scheme will ease
the problem of data sparseness that speaking-rate dependent
modeling often encounters. In [5], we showed that sim-
ple (speaker-independent) speaking-rate dependent model-
ing lowered the accuracy due to insufficient training data for
the respective models.

After preliminary experiments, we set two categories of
fast and slow utterances with the boundary of 7 mora/sec (�
mean of speaking rate). The MLLR adaptation is applied
twice from the speaker independent model as in the normal
speaker adaptation. As a result, we get models adapted to
fast and slow speech (adap-fast and adap-slow), respec-
tively, which are applied to the corresponding utterances.

The recognition results are listed in Table 3. The adap-
tation considering the speaking rate brought slight improve-
ment over the normal speaker adaptation (0.3% absolute). It
is more effective on faster speech and comparable on slow
speech.

It is also noticed that there is a large difference in the
speaking rate among the test-set speakers and there are some
speakers who tend to speak slow and have only a few fast
utterances. For these speakers, this speaking-rate depen-
dent adaptation method does not work properly. Actually,
fast utterances are mainly made by half (=five) of the test-
set speakers. By looking into these five test speakers who
have both fast and slow segments in a sufficient amount, we
confirmed accuracy improvement for both slow and fast ut-
terances.

There is no degradation due to estimation errors of the
speaking rate this time. Although the improvement is not
large, there is little extra computation by the method. The
method runs even faster because the adaptation is done sep-
arately for the two categories with fewer data for each.

7. CONCLUSIONS

We have presented methods that deal with the speaking rate
in the decoding and adaptation techniques.

The speaking-rate dependent decoding strategy applies
the most adequate acoustic analysis, phone models and de-
coding parameters according to the estimated speaking rate.
We investigated several methods and demonstrated that the
selective application is effective. We have also proposed the
use of speaking rate information in speaker adaptation. It is
confirmed that the separate adaptation based on the speak-
ing rate works reasonably.
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