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ABSTRACT

Encoder-decoder models for acoustic-to-word (A2W) automatic
speech recognition (ASR) are attractive for their simplicity of archi-
tecture and run-time latency while achieving state-of-the-art perfor-
mances. However, word-based models commonly suffer from the
out-of-vocabulary (OOV) word problem. They also cannot leverage
text data to improve their language modeling capability. Recently,
sequence-to-sequence neural speech synthesis models trainable from
corpora have been developed and shown to achieve naturalness com-
parable to recorded human speech. In this paper, we explore how
we can leverage the current speech synthesis technology to tailor the
ASR system for a target domain by preparing only a relevant text cor-
pus. From a set of target domain texts, we generate speech features
using a sequence-to-sequence speech synthesizer. These artificial
speech features together with real speech features from conventional
speech corpora are used to train an attention-based A2W model. Ex-
perimental results show that the proposed approach improves the
word accuracy significantly compared to the baseline trained only
with the real speech, although synthetic part of the training data
comes only from a single female speaker voice.

Index Terms— Sequence-to-sequence speech recognition,
sequence-to-sequence speech synthesis, acoustic-to-word models,
training data augmentation

1. INTRODUCTION

Deep learning-based hybrid acoustic models have drastically im-
proved the performance of automatic speech recognition (ASR) [1].
It was recently reported that even a human-level recognition per-
formance can be achievable when the hybrid models are coupled
with bidirectional LSTMs and very deep convolutional networks
with residual connections [2, 3]. However, in exchange for these
excellent performances, these ASR systems have very complicated
structures consisting of complex decoders, large language models,
and carefully designed pronunciation dictionaries. They have a large
runtime latency and a limited portability.

In the mean time, we have seen a rapid development of alterna-
tive sequence-to-sequence (seq2seq) approaches to speech recogni-
tion based on connectionist temporal classification (CTC) [4, 5, 6, 7],
attention-based encoder-decoder models [8, 9, 10, 11] and RNN-
transducers [12, 13]. Their remarkable advantage is that they get
rid of dependency on frame-level probabilistic state transition mod-
els such as HMMs. An extreme example of the seq2seq approach
is acoustic-to-word (A2W) models [14, 15, 16] which directly map
acoustic signals into word sequences. They do not require any exter-
nal decoders, leading to an extremely simplified architecture of ASR
systems and very low latency. Outputting words rather than phones
or characters is also an advantage since it requires no post-processing
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to utilize the ASR output in the subsequent natural language process-
ing such as dialogue, translation and information query.

We have shown in [16] that attention-based models in which the
label output probability is explicitly conditioned on the past out-
put are significantly better than CTC-based models for word-level
seq2seq speech recognition. We have also demonstrated in [17] that
an attention-based A2W model achieved a WER reduction of 25.3%
relative from a state-of-the-art hybrid DNN-HMM system with a de-
coding speed faster by a factor of 50. In this paper, we further seek
to improve the attention-based A2W speech recognition system.

Although A2W models are attractive for multiple reasons we
pointed out above, they have some drawbacks compared to conven-
tional systems based on phones or characters. The most important
problem is that they cannot predict posterior probabilities for un-
known words which did not appear in the training data and have no
mechanism to add new words to its vocabulary. This is a serious
problem, since an ASR system may encounter a number of words
specific to the domain which are out of vocabulary (OOV) of the
system, when it is deployed in a particular task domain.

In addition to this OOV word problem, there is another issue that
A2W models have no way to utilize text data directly to improve its
language modeling capability. It is because A2W models are trained
in a seq2seq manner from pairs of speech and word labels. In other
words, they are constrained to learn a probability distribution over
word sequences only from a limited amount of labeled speech, al-
though it could be estimated more reliably from a large collection
of texts covering many linguistic phenomena. It also implies that
we cannot perform domain adaption of A2W models using relevant
texts in a target domain.

Recently, sequence-to-sequence neural speech synthesis models
trainable from corpora have been developed and shown to achieve
naturalness comparable to recorded human speech [18, 19, 20]. In
this paper, we propose a novel approach to address the problems
inherent to A2W models exploiting the current seq2seq speech syn-
thesis technologies. In this approach, we perform training data aug-
mentation by generating speech features from a set of target domain
texts using a seq2seq speech synthesizer. These artificial speech fea-
tures together with real speech features from conventional speech
corpora are used to train an attention-based A2W model. We only
need to prepare relevant texts to the application domain of the speech
recognition system, which are much more easily accessible than la-
beled speech data. We can expand the vocabulary and enhance the
language modeling capability of the A2W model using new words
and word contexts included in the augmented data. Moreover, our
method makes it possible to integrate an A2W model with an RNN-
based external language model in a natural way by ensuring that
they have the same vocabulary. We also explore an encoder freez-
ing learning technique to prevent the undesirable effects from the
uniformness of synthesized speech.

SLT 2018



The experimental evaluations show that the proposed approach
implemented with a speech synthesizer trained using speech data
from a single female speaker significantly improved the speech
recognition performance compared to the baseline models trained
using only the real speech data.

2. ATTENTION-BASED SPEECH RECOGNITION

This section presents a brief review on attention-based seq2seq
speech recognition, including a decoding algorithm based on beam
search. In attention-based speech recognition, we model seq2seq
mapping between speech and label sequences using an encoder-
decoder architecture [8, 9]. This architecture has two distinct sub-
networks. One is the encoder which transforms an acoustic feature
sequence of length 7" to a sequential representation. Based on this
encoded acoustic information, the other decoder sub-network pre-
dicts a label sequence whose length L is usually shorter than the
input length 7. The decoder uses only a relevant portion of the
encoded sequential representation for predicting a label at each time
step using the attention mechanism. The encoder is implemented as
multi-layer bidirectional RNN such as LSTM [21], and the decoder
usually consists of a single layer of unidirectional LSTM followed
by a softmax output layer.

The attention-based models are formulated as follows. The en-
coder transforms input acoustic features X = (1, ..., &7) to a se-
quential representation H = (hq, ..., hy) that summarizes the char-
acteristics of the input. In the following decoding step, the hidden
state activation of the RNN-based decoder at the /-th time step is
computed as:

(€]

where g; and y;—1 denote the “glimpse” at the /-th time step and the
predicted label at the previous step, respectively. The glimpse g; is a
weighted sum of the encoder output sequence:

r; = Recurrency (rl,l,gl, ylfl) ,
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where a;; is an attention weight for h;. It is calculated as:
e,y = Score(ri—i,hy,ou—1), 3)
T
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There are many choices for implementation of the score function
(4). In this paper, we adopt the hybrid location and content-based
attention mechanism [9] as follows:

et = (®)
.fz = (6)

where * denotes one-dimensional convolution. Using g, and r;_1,
the decoder predicts the next label y; as:

w’tanh(Wri_1 + Vh, + U f,, +b),

F % -1,

yi ~ Generate (ri-1,9;) , @)
where the Generate function is implemented as:
Rtanh (Pri—1 + Qg,) . 8)

The objective for training the attention models is a cross entropy
loss calculated between the predicted label sequences and the target
label sequences.
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Algorithm 1 ForwardBeamSearch(B, X)

1: F': set of completed label sequences
2: NewSegs : set of label sequences at current output time

3: Segs : set of label sequences up to the last output time
4: F < {¢}, score((sos)) = 0, Seqs < {({sos))}
5:b<B
6: while b > 0 do
7. NewSegs < {¢}
8:  for sequence s € Seqs do
9: Y <« The b best words in terms of p(y|s, X)
10: for wordy € Y do
11: st < concat(s, y)
12: score(s™) = score(s) + log(p(y|s, X))
13: if y = (eos) then
14: add sT to F
15: b<=b-1
16: else
17: add s to NewSegs
18: end if
19: end for
20:  end for
21:  Segqs < The b best sequences in NewSeqs in terms of
score(s™)

22: end while
23: return set of sentence candidates F'

A runtime decoding algorithm for word-level attention-based
models is presented in Algorithm 1. This algorithm returns the B-
best sentence candidates using a decreasing beam width initialized
with B. It is simple since we do not need to incorporate external
dictionaries or language models. (sos) and (eos) are special sym-
bols for the start and end of a sentence. The posterior probability of
a word at each decoding step p(y|s, X) on line 9 and 12 is calcu-
lated using formulas from (1) to (8). After performing Algorithm 1,
we rescore each sentence candidate s in I using an insertion penalty
A as follows:

(&)

rescore(s) = score(s) — A|s|,

where |s| is the length of sequence s, and score(s) is the value
calculated on line 12 of Algorithm 1. We output the sentence with
the largest rescore(s).

3. SEQUENCE-TO-SEQUENCE SPEECH SYNTHESIS

Seq2seq speech synthesis is a technology for generating speech di-
rectly from text which does not require complex multistage pipelines
unlike traditional text-to-speech (TTS) systems. Although a number
of distinct architectures have been proposed [22, 18, 19, 20], these
systems are commonly composed of an attention-based feature pre-
diction network which maps character embedding to mel-scale spec-
trograms or vocoder parameters, followed by a vocoder which syn-
thesize time-domain waveforms from these predicted features. In
this paper, we use Tacotron 2 [19] which has a relatively simple
architecture similar to our A2W model and was shown to achieve
striking naturalness. Here, we describe in depth the feature predic-
tion network of Tactron 2 along with the network configurations we
used in our experiments. Note that we do not need a vocoder, since
what we need is mel-scale spectrograms for training a recognizer
rather than waveforms.

The feature prediction network consists of the character encoder
and the attention-based decoder subnetworks. The former summa-



rizes the input character sequence and outputs a sequential represen-
tation of the same length as the input sequence. The latter predicts a
sequence of Mel-spectrograms in an autoregressive way conditioned
on the encoder outputs.

In the encoder subnetwork, each input character is first mapped
to a 512-dimensional continuous vector. This mapping is performed
via a learnable character embedding layer. These character embed-
dings are fed to a stack of 3 convolutional layers. Each layer con-
volves 512 filters of size (5,1) to its input, followed by batch nor-
malization [23] and ReLU activations. The output of the final con-
volutional layer is input to a one-layer bidirectional LSTM with 256
memory cells in each direction to generate the encoded features.

The decoder subnetwork predicts five consecutive frames of
Mel-spectrograms at each decoding step based on the encoder out-
puts and the final frame of the predicted features at the previous step,
as follows. The encoder outputs are summarized using the location-
sensitive attention mechanism [9]. The attention weight at each
decoding step is calculated using the 128-dimensional projected
vectors of the decoder LSTM state, the encoder output sequence and
the location features. The location features are calculated by con-
volving 32 one-dimensional convolution filters with length 31 to the
cumulative vector of the attention weights in all past decoding steps.
The sum of these vectors is normalized using a formula equivalent
to (4) in the last section after applying tanh activation to generate the
attention weight of the current decoding step. Meanwhile, the last
one frame of the prediction in the last time step is passed through
a pre-net consisting of two fully-connected layers with 256 ReLU
units. This pre-net output and the attention vector are concateneted
to be provided to a 2-layer unidirectional LSTM with 1024 memory
cells. The LSTM outputs together with the attention context vector
are passed through a linear projection layer to predict the 5 frames
of the target Mel-spectrograms.

After finishing all decoding steps, the predicted Mel-spectrogram
sequence are processed by a 5-layer convolutional post-net which
predicts a residual to add to the original prediction. Each convolu-
tional layer has 512 filters of size (5,1). Batch normalization and
tanh activations are applied on all but the final layer. The entire
network is trained using the L1 distance between the predictions and
the target spectrograms as the loss function'.

The decoder simultaneously predicts if the output sequence has
completed or not at each time step. It is judged based on the de-
coder LSTM output and the attention context. More precisely, the
concatenation of these vectors are projected down to a scalar and
applied with sigmoid activation to calculate the probability that the
decoding is complete. In the runtime of speech synthesis, we stop
generating acoustic features if this probability exceeds 0.5.

Seq2seq speech synthesis techniques are commonly shown to
achieve very high mean opinion scores (MOS) using unified sim-
ple architectures which are easy to implement and optimize. They
also have an advantage that they generate a sequence of acoustic fea-
tures we can use directly as the input to speech recognition systems.
These are the reasons why we adopt seq2seq speech synthesis in our
proposed approach instead of conventional unit selection-based con-
catenative methods or HMM-based statistical parametric methods.

4. PROPOSED METHOD

Before introducing our proposed methods, we recap the problems
with A2W models. First, they cannot predict posterior probabilities

I'The original Tacotron 2 used the mean squared error (MSE), which gave
slightly worse results than the L1 loss in our preliminary experiments.
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of words which did not appear in the training data. Therefore, they
are never able to recognize a sentence with these OOV words cor-
rectly. Second, since the entire network of an A2W model is trained
in a seq2seq manner from pairs of speech and word sequences, there
is no direct way to enhance language modeling capability of the
model even if a large collection of texts is available.

A simple way to address the OOV word problem is to combine
A2W models with character-based models [24, 16]. In this approach,
speech is decoded using both of an A2W model and an acoustic-to-
character (A2C) model. When an OOV word is detected with the
A2W model, the character sequence from the A2C model appearing
in the speech segment corresponding to the OOV word is output in-
stead of the OOV symbol. These methods assume that OOV words
are detected with a high recall rate. A more recent approach called
the modular training of A2W models aims to resolve both of the two
problems [25]. An A2W model is factorized into two modules, an
acoustic-to-phoneme (A2P) model and a phoneme-to-word (P2W)
model. This is similar to the traditional hybrid systems which com-
bine acoustic, transition, pronunciation and language models in a
modular way. The P2W model maps phone sequences to word se-
quences and can be trained from text data without speech.

In this paper, we propose a more direct approach for enhancing
A2W models inspired by the recent progress in seq2seq speech syn-
thesis. Our method makes it possible to train A2W models from ar-
bitrary sentences leveraging a state-of-the-art speech synthesis tech-
nique. It does not require any modification to the simple architecture
of A2W models or additional lower-level models retaining the full
strength of vanilla A2W models.

4.1. Training data augmentation

We exploit seq2seq speech synthesis reviewed in the previous sec-
tion for augmenting training data for attention-based A2W models
using relevant texts to a target domain. Addition of the text with
right words and word contexts unseen to the baseline model, trained
only with an available real speech corpus, will contribute to expand
the vocabulary and improve the language modeling capability of the
A2W model.

In our first attempt of the proposed approach in this paper, we
work with the Japanese language. Since the number of distinct char-
acters in Japanese are a few thousands, unlike languages such as En-
glish where the number is a few tens, it is obvious that we will have
too many number of parameters in the model as well as a serious
sparse data problem if characters are used as input units. Therefore,
we opted to choose phones as the input unit rather than characters in
the original Tacotron2.

We use a 40-dimensional vector consisting of 40-channel log
Mel-filterbank (Imfb) outputs as the target of the synthesizer net-
work, which is the same acoustic feature we use for our speech
recognition systems. This is because we want to use an output se-
quence from the synthesizer directly as input to the A2W model in
order to avoid an artifact caused by performing additional feature
conversion. The frame window length and frame shift are set to be
10 ms and 25 ms following the standard setting in speech recogni-
tion.

The procedure of the data augmentation is as follows. We col-
lect texts from a target domain where we want to perform speech
recognition. Since words are not separated by spaces in Japanese,
each sentence in the collected data is first processed by a Japanese
morphological analyzer to separate it into words and simultaneously
obtain the pronunciation of each word. The sequence of phones
and special symbols representing word boundaries are fed into the



seq2seq speech synthesizer to generate a mel-spectrogram for the
sentence. The set of synthesized log mel-spectral features and cor-
responding word sequences are added to the conventional training
data coming from the real speech corpora to train the attention-based
A2W speech recognition model.

4.2. Encoder freezing learning of attention model

One concern with the data augmentation using a speech synthesizer
is the possibility that artificial speech is much less acoustically di-
verse than real speech. This is more likely when the synthesizer is
trained using a typical speech synthesis corpus consisting of voices
from a single speaker. We thought that the augmented artificial data
can be harmful for training the acoustic encoder subnetwork of A2W
models, while they should be essential for enhancing the decoder.

Therefore, we adopted the encoder freezing learning of attention-
based models which we investigated for domain transfer learning of
A2W models [26]. In this framework, the parameters of the acoustic
encoder are copied from a model pretrained on real speech, and they
are fixed during the training using the augmented data set consisting
of the artificial and real data. In other words, the encoder subnet-
work for summarizing the acoustic information is trained only on
real speech data, while the decoder layer which is responsible for
predicting word transition probabilities is tuned using the full set of
the augmented data. We show the procedure of the encoder freezing
learning in Fig. 1. The decoder is designed to have an softmax
output layer whose size is the same as the expanded vocabulary and
its parameters are initialized with random values. This framework
aims to prevent the undesirable effects from the uniformness of
synthesized speech, while taking advantage of the diversity coming
from a large text corpus.

4.3. Language model integration

It was shown to be very effective to incorporate external language
models in speech recognition using conventional seq2seq models
based on characters [27, 28, 29]. This is because language models
can be trained on a large set of texts covering much richer linguistic
information than a limited amount of labeled speech data used for
training the seq2seq models.

On the other hand, integration of A2W models and external
word-level language models has not been investigated well, mainly
because the vocabularies of the A2W model and the language model
trained on larger data are inevitably different. It is far from trivial to
combine them to calculate scores for words in each decoding step.
However, based on our data augmentation method, we can easily
achieve a shallow fusion of the A2W model and the language model,
because we can train both of them on the same word sequences and
ensure that they have the same vocabulary. For decoding with the
external language model, a small modification is required to line 12
in Algorithm 1 as:

score(sT) = score(s) + log(p(y|s, X))
+ulog(pra(yls)), (10)

where pr,a(y|s) is the posterior probability of word y given word
history s, which is calculated with a LSTM-based neural language
model. It is trained using all texts from the source and target domain.
v is the weight for the language model score. The A2W model and
the external language model use context in different ways and are ex-
pected to complementarily contribute to improve speech recognition
performance?.

2For example, A2W models tend to give similar probabilities to words
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Fig. 1. Encoder freezing learning for enhancing A2W model using
real and artificial training data

5. EXPERIMENTAL EVALUATIONS

5.1. Data

We evaluated our methods through speech recognition tasks using
two standard Japanese corpora: the Corpus of Spontaneous Japanese
(CSJ) [30] and Japanese Newspaper Article Sentences (JNAS). CSJ
includes two distinct subcorpora, namely, CSJ-APS and CSJ-SPS.
CSJ-APS consists of academic presentation speeches on several top-
ics such as science, engineering, humanities and social science. CSJ-
SPS consists of simulated presentation speeches on three general
themes. These subsets have their own official test sets, namely,
CSJ-TESTSET1 and CSJ-TESTSET3. While CSJ comprises spon-
taneous utterances, JNAS consists of newspaper articles read aloud.

5.2. A2W model

A 40-dimensional vector consisting of 40-channel log Mel-scale fil-
terbank (Imfb) outputs is used as acoustic features for attention-
based A2W models. Non-overlapping frame stacking [6] was ap-
plied to these features in which we stack and skip three frames to
make a new super frame. The acoustic encoders in our attention
models consist of 5-layers of bidirectional LSTMs with 320 cells.
Dropout [31] was used for training each LSTM layer with a dropout
rate of 0.2. The decoder consists of a 1-layer LSTM with 320 cells
and a softmax output layer with the nodes for vocabulary words,
(sos), (eos) and (OOV) special token for words which appeared less
than 3 times in the training sets. The vocabularies of the A2W mod-
els consist of words which appearerd more than two times in the
training sets. We used Adam [32] for optimizing network param-
eters. We also used gradient clipping with a threshold of 5.0. All
network parameters were initialized with random values drawn from
a uniform distribution with range (-0.1, 0.1). We also used sched-
uled sampling [33] and label smoothing [34] to improve the opti-
mization. In the experiments for integrating A2W models and RNN-
based external language models, we used neural language models
with 3 layers of unidirectional LSTMs with 256 memory cells. Each
word is mapped to a 512-dimensional continuous vector before fed
to LSTMs. We used PyTorch [35] to implement the A2W models

with similar pronunciations, while language models make predictions inde-
pendent of word pronunciations.



Table 1. ASR performance for two CSJ test sets (WER(%))

TESTSET1 (APS) TESTSET3 (SPS)

SPS (real) (baseline) 24.92 1143
+ language model (SPS) 25.37 11.27
SPS (real) + APS (synthesized) 19.40 10.42
+ language model (APS + SPS) 18.74 10.22
SPS (real) + APS (synthesized) with encoder freezing learning 19.09 11.29
+ language model (APS + SPS) 18.38 11.07
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Fig. 2. An example of synthesized Imfb features from a Japanese
sentence “arayuru geNjitsu o subete jibuN no ho: e nejimage ta
no da”. The vertical axis designates Imfb channel numbers and the
horizontal axis designates the time frames with 10ms shift.

and the LSTM-based language models. The beam width B was set
to be 4 in all speech recognition experiments.

5.3. Seq2seq speech synthesizer

As we described in section 4.1, The seq2seq speech synthesizer
is trained to output 40-channel log mel-filterbank features. For
word segmentation and pronunciation annotation of texts, we used
Mecab®, a CRF-based Japanese morphological analyzer, combined
with the "Unidic” word dictionary*. As training data, we adopted
JSUT (Japanese speech corpus of Saruwatari-lab., University of
Tokyo) corpus [36]. It is a recording of 7,607 prompt texts read
aloud by a female speaker with total duration of ten hours. The
prompt sentences were tokenized using Mecab and the correspond-
ing phone sequences were obtained. These automatically generated
phone labels are used without human checking and, therefore, are
expected to include a certain amount of erroneous ones. We used
33 phone classes including special tokens for pause, word boundary
and the end of a sentence. We also used PyTorch [35] to imple-
ment the Tacotron2-based feature prediction network using phones
as input units. We used dropout with a dropout rate of 0.5 in all
convolutional layers following the recipe in [19]. The LSTM layers
in the decoder subnetwork are regularized using zoneout [37] with a
probability of 0.1. As in the training of A2W models, we used the
Adam optimizer. Fig. 2 depicts an example of speech synthesized
from a sentence in the training set of JNAS °.

5.4. Adaptation between two spontaneous speech domains

We first examined how proposed approach works effectively in
adapting a seq2seq ASR model trained with spoken presentations
in general everyday life topic domain to the academic presenta-
tion domain on audio, speech and language processing, using SPS

3http://taku910.github.io/mecab/

“http:/funidic.ninjal.ac.jp/

SWe cannot assess the naturalness of the synthesized features directly,
because it is difficult to reconstruct waveforms from 40-dimensional Imfb
features. However, we found that the synthesized utterances were recognized
almost perfectly using an A2W model trained on real speech.
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(”Simulated” Presentation Speech) and APS (Academic Presenta-
tion Speech) subcorpora of the CSJ corpus.

The baseline model was trained using SPS training set consist-
ing of 281 hours of spontaneous speech. Its vocabulary consisting
of all the distinct words occurring more than twice in the training set
comprises 24,826 words. For the adaptation for Academic presenta-
tion domain, we synthesized 282,235 utterances from the transcript
of the APS training set using the seq2seq speech synthesis model
of single female voice described in the last subsection. The ASR
model for the target domain was trained by adding this 255 hours
of synthetic speech to the baseline 281-hour SPS training set. By
the addition of the synthetic APS set, the vocabulary of the model
was expanded by around 10k words and reached 34,331 words. The
training was performed with and without encoder freezing described
in Section 4.2.

The second column in Table 1 ("TESTSET1 (APS)”’) shows the
result for the target domain test set®. TESTSET] is composed of ten
academic presentation speeches by ten male speakers. The baseline
model trained only with the SPS training data gave a relatively high
WER of 24.9% and integration of the language model trained on the
SPS training set transcript rather degraded the accuracy slightly. On
the other hand, with the enhanced model trained by the proposed ap-
proach using synthetic speech, the WER for the target domain test
set was reduced by 5.5 points to 19.4%. The encoder freezing gave a
further reduction of 0.31 points. The LSTM language model trained
with the transcripts of both SPS and APS training data consistently
yielded significant improvements. The best model gave an WER of
18.38%, which corresponds to a 26.2% relative improvement over
the baseline. We observed that a number of words unknown to the
baseline model were correctly recognized with the enhanced mod-
els with a enlarged vocabulary. These words include, for example,
“efuzero” (FO) and "oNcho” (tone) that often appears in the context
of audio, speech, and language processing. It is noteworthy that we
had these substantial improvements with the all male-speaker test set
by augmenting the training data with synthesized speech of a single
female voice. It may be because the synthetic speech by the seq2seq
synthesizer has a high enough naturalness to contribute to the train-
ing of the decoder part of the A2W model as well as it does not
hurt the training of the encoder part of the model which has a inher-
ent discriminative nature resistant to the quantitative dominance of a
single speaker.

We also looked at the influence of the domain adaptation to the
original source domain (SPS) test set and show the results on the
third column of Table 1. The test set of CSJ-SPS, TESTSET3, is
composed of ten simulated presentation speeches by five male and
five female speakers. Although the WER obtained with the base-
line model was already low, the data augmentation using artificial
data gave a further significant improvement. We understand that this

%The OOV rates of TESTSET! for the baseline and enhanced models are
4.48% and 0.96%, respectively.



Table 2. ASR performance for JNAS test set

training data amount (hours) WER (%)
CSJ (real) (baseline) 528.8 17.71
JNAS (real) (oracle) 85.5 21.16
CSJ (real) + INAS (real) (oracle) 614.2 5.16
CSJ (real) + INAS (synthesized) 596.5 11.21
CSJ (real) + INAS (synthesized) with encoder freezing learning 596.5 9.01
+ language model (CSJ + JNAS) - 8.71
CSJ (real) + INAS (synthesized) + Mainichi (synthesized) with encoder freezing learning 1502.10 7.78
+ language model (CSJ + JNAS + Mainichi) - 7.40

gain is due to the improved capability for estimating word transition
probabilities learned from enhanced training data based on a consid-
erable amount of text. However, a different tendency was observed
in the encoder freezing learning compared to the cross-domain re-
sults. For the SPS test set, encoder freezing training gave an im-
provement from the baseline, but was not as good as training of the
whole model. Again, the language model integration was effective
for both of the enhanced models.

5.5. Adaptation to newspaper domain

We also attempted a more challenging domain adaptation from spon-
taneous presentation to read speech of newspaper articles, where the
difficulty comes from the large differences in speaking style and in-
formation content. This time, the baseline model was trained using
the whole real speech training data of the CSJ corpus comprising
both of APS and SPS. Its vocabulary consists of 32,573 words. For
the target domain ASR model, we synthesized a set of utterances
from 49,576 news paper prompt texts of the JNAS training data and
added them to CSJ training set to train the A2W model. By the ad-
dition of synthetic JNAS data, its vocabulary turned out to be 35,795
words. In order to manage the consistency of word boundary defini-
tions in using two distinct corpora, which is not obvious as a matter
of fact with the Japanese language, we tokenized and generated pro-
nunciations of the both corpora using Mecab. The label error rate
of the automatically generated phone sequences calculated using the
manual transcriptions as reference was 6.29%. The results of the
speech recognition experiment using the test set of JNAS are sum-
marized in Table 2. The test set is composed of 200 sentences spoken
by 22 male and 22 female speakers.

The enhanced model with the proposed method gave a much
lower WER than the baseline trained on all utterances in CSJ. We
also observed an interesting fact that the encoder freezing learning
was quite effective in this experiment which gave an additional im-
provement of 2.2 points. One possible reason for this is that the
speaking style of the test set speech is more different from the added
synthetic speech than what we expect about two sets that are both
coming from read speech. Integrating the external language model
also yielded a WER reduction, resulting in an improvement of 50.1%
relative over the baseline.

We also tried to further increase the amount of training data us-
ing an external language resource. We randomly picked 500k sen-
tences from articles of Mainichi Shimbun, one of the major news-
papers in Japan, published in 2000 and 2001. The artificial speech
features synthesized from these newspaper sentences are used for
training a new A2W model together with CSJ and the artificial data
generated from sentences of INAS. The vocabulary size of the new
model is 41,890. By performing this additional data augmentation,
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the WER was further reduced by 1.23 points as shown in the seventh
row in Table 2. The language model integration was also effective.
From these results, we confirm that relevant texts from outside of the
target corpus can be utilized to improve the performance of the A2W
model as well.

For comparison, we also built two oracle models. One is the
model trained using the real utterances in JNAS, which gave a poor
speech recognition performance due to the small amount of training
data. The other is the A2W model trained on real data from both of
CSJ and JNAS. This model yielded a very low WER. It is encourag-
ing to note that the enhanced model using artificial augmented data
with our proposed method gave a gain corresponding to as large as
70% of the gain coming from adding the true speech data of the do-
main in this oracle model.

6. CONCLUSION

We showed that we can significantly enhance the speech recognition
performance of A2W models using only text data via phone-based
seq2seq speech synthesis. The proposed method makes it possible
to train an A2W model from arbitrary sentences and effectively ex-
pand the vocabulary and improve language modeling capability of
the model. We demonstrated the effectiveness of the method thor-
ough two cross-domain speech recognition experiments.

Previously a combination of seq2seq speech synthesis and
recognition has been investigated in [38]. The novelty of our contri-
bution is that we exploited seq2seq speech synthesis for enhancing
the A2W model and demonstrated that we can significantly im-
prove speech recognition performance using artificial training data,
while the main issue in [38] was investigating a deep learning-based
speech chain model.

Although our method extremely expands the vocabulary of the
A2W model, it is still not totally free from the OOV word problem.
It can be combined with existing methods for addressing problems
of A2W models such as [24, 16, 25] to achieve a further improve-
ment. While one of the important findings in this paper is that we
can significantly improve the performance of A2W models using a
speech synthesizer trained on a typical speech synthesis corpus con-
sisting of speech from a single speaker, it would achieve a further
improvement if we can train a synthesizer on a large speech cor-
pus containing many speakers and many speaking styles. Another
possible direction is, for example, investigating joint training of the
seq2seq synthesizer and the A2W model.
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