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Abstract
Denoising autoencoders (DAEs) have been investigated for

enhancing noisy speech before feeding it to the back-end deep
neural network (DNN) acoustic model, but there may be a mis-
match between the DAE output and the expected input of the
back-end DNN, and also inconsistency between the training ob-
jective functions of the two networks. In this paper, a joint opti-
mization method of the front-end DAE and the back-end DNN
is proposed based on a multi-target learning scheme. In the
first step, the front-end DAE is trained with an additional tar-
get of minimizing the errors propagated by the back-end DNN.
Then, the unified network of DAE and DNN is fine-tuned for
the phone state classification target, with an extra target of input
speech enhancement imposed to the DAE part. The proposed
method has been evaluated with the CHiME3 ASR task, and
demonstrated to improve the baseline DNN as well as the sim-
ple coupling of DAE with DNN. The method is also effective as
a post-filter of a beamformer.

Index Terms: Speech Recognition, Speech Enhancement,
Deep Neural Network (DNN), Denoising Autoencoder (DAE)

1. Introduction
Speech reverberation and additive noise adversely influence the
speech recognition accuracy when the microphone is distant,
and there is increasingly a great need for robust ASR sys-
tems. To this end, a number of efforts have been made on
front-end signal enhancement, as well as robust modeling for
back-end recognizers. Major approaches to the front-end en-
hancement include traditional optimal filtering techniques such
as Wiener filtering [1] and spectral subtraction [2], parametric
feature-based methods such as SPLICE [3], and more recently
exemplar-based methods [4][5]. Multi-channel enhancement
such as beamforming has also been explored.

Following the great success of deep neural networks
(DNN) in acoustic modeling [6], speech feature enhance-
ment using a class of DNNs, often referred to as denois-
ing autoencoders (DAEs), has been investigated as well
[7][8][9][10][11][12][13][14]. In these works, DAEs are
trained to map a corrupted speech observation to a clean one
and have achieved significant ASR performance improvements.
A remarkable advantage of DAEs is their ease of deployment.
The DAE-based speech enhancement is typically conducted at
the feature level, and the enhanced features can be directly used
in the back-end DNN-HMM acoustic model [15][16] without
much latency.

However, the conventional DAE approach has a fundamen-
tal problem. While the goal of the front-end speech enhance-
ment is to retain useful information for speech recognition while
minimizing distortion caused by the corrupting noise, the objec-

tive function used for the DAE training considers only the latter
criterion, which is the mean squared error (MSE) between the
enhanced features and the clean features. Therefore, there can
be a mismatch between the DAE output and the acoustic mod-
els, which can limit or even seriously degrade recognition ac-
curacy [10][14]. To address this problem, we propose joint op-
timization of DAE and DNN acoustic model based on a multi-
target learning scheme. In the first training stage for the DAE
front-end, we incorporate the back-end classification error to
the DAE training objective so that the enhanced features retain
useful information for the acoustic model. In the following uni-
fied training stage, we add an MSE objective in order for the
front-end part to retain the enhancement characteristics during
the discriminative fine-tuning of the entire network for senone
classification.

After we introduce two baseline methods for DNN-based
speech feature enhancement in Section 2, the detail of the pro-
posed method is explained in Section 3. Experimental evalua-
tions are presented in Section 4 before the summary of related
works in Section 5 and the conclusion in Section 6.

2. DNN-based speech enhancement for ASR
2.1. Denoising autoencoder (DAE)

A straightforward use of DNN for speech enhancement is to
train a network for regression to map corrupted speech features
to clean speech features [17]. This type of DNNs for regression
tasks are often called deep autoencoders [18], and we refer to
a particular class of deep autoencoders for speech enhancement
as denoising autoencoders (DAEs). Unlike DNNs for classifica-
tion, DAEs are typically trained to reconstruct signals by using
the MSE as the objective function [19]:

Eenh =
1

2
||zLf

f − y||2 (1)

where z
Lf

f designates the DAE output for a corrupted speech
observation, i.e. the final layer output of a DAE with Lf layers
and y is the corresponding clean speech observation.

We need to be aware that the DAE is not always guaranteed
to improve speech recognition performance, because it only
tries to minimize the MSE and takes no account of information
on the back-end acoustic model. The mismatch between the
DAE output and the back-end model becomes serious [10][14]
especially when the back-end is a multi-condition model trained
using a variety of noisy data, which is known to be effective
for robust ASR. Some of discriminant information contained in
noisy features can be lost through the highly non-linear ”denois-
ing” process.
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2.2. Feature-space adaptation with DNN

An alternative DNN-based enhancer is a network which con-
ducts feature-space adaptation so that the mapped features
match the back-end acoustic model. This approach has
been conventionally investigated in the speaker adaptation
area [20][21][22][23][24][25]. The training procedure for this
adaptation network is as follows. After a back-end DNN is
trained, typically using clean data, a new DNN is attached to
its input layer. It is trained so that the senone classification per-
formance of the back-end DNN is improved typically using the
cross-entropy criterion:

Ece = −
∑

i

si log z
Lb
bi (2)

where si is the i-th element of the 1-0 encoded vector represen-
tation of the ground-truth senone label for the input observation

and z
Lb
bi is the i-th element of the output from the Lb-layer back-

end DNN for senone classification. Note that the parameters
of the back-end DNN are fixed during this front-end training
stage. The adaptation network is less susceptible to the mis-
match problem that the DAEs for enhancement suffers from,
since it is trained to improve the performance of the acoustic
model.

3. Joint optimization with multi-target
learning

3.1. Front-end DAE training

Based on the discussion in Section 2, we considered an inte-
grated approach. The mismatch problem inherent in the DAE
may be mitigated by incorporating the errors from the back-end
DNN for senone classification. Therefore, we propose a new
front-end DAE training method which uses both enhancement
and classification criteria. The objective function for the pro-
posed multi-target DNN training is defined as:

Emulti = λEce + (1− λ)γEenh (3)

Here, λ is a weight for the senone classification at the back-end,
and γ is a parameter to calibrate the large difference in order
of magnitude between the errors from the senone classification
and the MSE of enhancement. Practically, we can set γ to be the
ratio of the optimized learning rate for the DAE to that for the
back-end DNN. The partial derivative of this unified objective

with regard to the vector of inputs u
Lf

f to the activation in the
output layer Lf of the front-end DNN, which we need for the
delta rule of backpropagation, is calculated as:

δ
Lf

f =
∂Emulti

∂u
Lf

f

= λW 1
bδ

1
b + (1− λ)γ(y − z

Lf

f ) (4)

where W 1
b is the weight matrix for the first layer of the back-

end DNN and δ1
b is the vector of partial derivatives of Ece with

regard to the input u1
b to the first-layer activation function of

the back-end DNN. z
Lf

f is the output vector of the front-end

DAE and y is the corresponding clean speech observation. u
Lf

f

and z
Lf

f are identical when the output activation function is the
identity function as in the current case.

Figure 1 illustrates the multi-target learning procedure for
the front-end DAE. Initially, the back-end DNN acoustic model
is trained using clean or noisy training data and senone labels
for them. Next, we construct and initialize the front-end DAE.
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Figure 1: Front-end DAE training with multi-target learning

For each observation vector x, the front-end DAE output z
Lf

f is
computed. It is then input to the back-end DNN and the frame

classification result z
Lb
b is obtained. The classification error for

the correct senone vector s is calculated as in (2) and propa-
gated back to the first layer derivative δ1

b , which appears in the
first term of equation (4). Together with the second term which
is the derivative of the enhancement error defined in (1), the er-

ror derivative is propagated to δ
Lf

f for the output layer of the
front-end DAE using equation (4). This is propagated down to
the first layer of the front-end DAE and only the network pa-
rameters of the front-end are updated. Based on the training
criterion of this procedure, the resulting front-end is expected
to enhance corrupted speech while retaining as much informa-
tion for senone classification. Note that this (single-task) multi-
target learning scheme is different from the multi-task learning
where each task has its own output layer and a respective objec-
tive function.

3.2. Unified network training

Once we have an improved front-end for speech enhancement,
it is natural to consider re-training of the back-end model us-
ing training data enhanced by this front-end. However, it is
empirically known that this simple approach does not always
work as expected [17]. On the other hand, it has been reported
with GMM-HMM based ASR that the speech recognition per-
formance can be improved when the feature enhancement front-
end and the back-end classifier are optimized jointly [26][27].
Inspired by these works, in this paper, we propose a novel
method that re-train the back-end DNN for senone classifica-
tion jointly with the front-end DNN for enhancement using the
clean data as a constraint.

The unified network made by connecting the front-end and
the back-end vertically can be regarded as a single very deep
network of depth Lf + Lb for senone classification. There-
fore, we can train the entire network by back-propagation with
the objective of mapping the noisy speech observation to the
ground-truth senone [28][13]. Moreover, we add an additional
regression objective for the front-end part to minimize the MSE
between its output (i.e. layer Lf in Figure 2) and the clean
speech observation, expecting that the front-end part is fur-
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Figure 2: Unified network training with multi-target learning

ther optimized for classification while retaining its enhance-
ment characteristics. The partial derivative of the unified ob-
jective function at the interface between the front-end part and
the back-end part (i.e. layer Lf ) of the unified network with

regard to u
Lf
u is calculated as:

δ
Lf
u = λW

Lf+1
u δ

Lf+1
u + (1− λ)γ(y − z

Lf
u ), (5)

which is essentially the same as equation (4).

4. Experimental evaluations
4.1. Task and data set

We evaluated the proposed methods through the ASR task of
the third CHiME challenge [29]. The noisy training set consists
of 1,600 real noisy utterances and 7,138 simulated noisy utter-
ances generated by artificially mixing the clean WSJ0 training
set with noisy backgrounds. There are four different types of
noisy environments.

We trained three types of DNN-HMM acoustic models us-
ing the original noisy data, the enhanced data generated by ap-
plying a filter-and-sum beamformer using 5 channels of input,
and the clean version of the training data. The beamformer we
used is BeamformIt [30]. The training tool for the DNN was
implemented in Python using CUDAMat [31]. The back-end
DNN of each model has six hidden layers with 2k rectified lin-
ear units (ReLUs) and a softmax output layer with 2k nodes. A
1,320-dimensional feature vector consisting of 11 frames of 40-
channel log Mel-scale filterbank outputs and their delta and ac-
celeration coefficients is used as input. Dropout [32] is used for
training of all hidden layers. The initial learning rate was set to
be 0.04. For decoding, we used the Kaldi WFST decoder [33].
The language model is the standard WSJ 5k trigram LM.

We used the real noisy evaluation set (”et05 real”) con-
sisting of 1,320 utterances for evaluating the methods, and the
real noisy development set (”dt05 real”) for tuning the hyper-
parameters such as the number of layers. We used the beam-
formed version of the evaluation set (”beam”) to test the effec-
tiveness of our methods when used as a post-filter of a beam-
former, as well as the original noisy evaluation data (”noisy”).

4.2. Effect of front-end training

The front-end DAE was trained based on the multi-target train-
ing scheme described in Section 3.1 for noisy and beamforming
enhanced speech, using the entire 8,738-utterance noisy training

Table 1: Performance of proposed methods combined with
clean acoustic model back-end (WER(%))

Scheme et05 real
noisy beam

(1) no front-end 51.05 31.72

(2) FEadap (classification target) 31.04 21.55

(3) FEenh (enhancement target) 30.34 20.10

(4) FEmulti (multi-target) 28.65 19.30
(5) + back-end re-training 27.25 19.54

(6) multi-target unified training 25.51 18.09

Table 2: Performance of proposed methods combined with
matched acoustic model back-end (WER(%))

Scheme et05 real
noisy beam

(1) no front-end 25.09 17.89

(2) FEenh (enhancement target) 29.32 22.41

(3) FEmulti (multi-target) 24.97 17.20
(4) + back-end re-training 26.49 18.95

(5) multi-target unified training 23.95 16.47

set and the same set enhanced by beamforming, respectively.
The 7,138 clean WSJ0 utterances and 1,600 headset utterances
were used for clean regression target. The input is augmented
with 137-dimensional phone-class features [34] derived from
the posterior output of a monophone DNN. We also trained a
conventional DAE front-end for enhancement (FEenh in Sec-
tion 2.1) and an adaptation network (FEadap in Section 2.2)
as baselines using the objective function described in Section
2. The number of the output units of all three types of front-
end DNNs is set to be the same as input units so that we can
feed them directly to the back-end DNNs. The activation func-
tion of the output layer is the identity function for all of them.
The number of layers in each front-end DNN has been opti-
mized using the development set and turned out to be 3, 4 and 5
for FEadap, FEenh and the proposed multi-target trained front-
end (FEmulti, hereafter), respectively. They all have 2k ReLU
units in their hidden layers and were trained using the Dropout
technique. The optimized learning rates for FEadap, FEenh,
and FEmulti were 0.02, 0.001 and 0.01, respectively. Accord-
ingly, we set γ in formula (3) to be 0.05 (= 0.001/0.02). The
clean data target for FEenh and FEmulti is a vector consisting
of 11 frames of clean versions of the training set (i.e. WSJ0 or
headset).

Figure 3 illustrates frame accuracy on the held-out set dur-
ing training of three types of front-ends1. The clean back-
end model and the beamformed features are used here. While
FEenh improves the performance of the clean back-end as the
training proceeds, FEadap is better and continues to get better,
probably because it directly uses the back-end classification as
objective. However, the best frame accuracies are achieved with
FEmulti that uses both targets as the training proceeds.

The recognition results on the real evaluation set in two
conditions (”noisy” and ”beam”) obtained with the two base-
line methods coupled with the clean acoustic model are shown
in rows (2) and (3) in Table 1. Different DNN front-ends trained
using the noisy and beamformed versions of the training set

1All front-end DNNs have the same number of layers (i.e. three) in
this experiment for a fair comparison.
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Figure 3: Frame accuracy by front-end networks on held-out set

were used for the evaluation of each method. We see that both of
them substantially improve the performance of the clean back-
end even after applying the beamformer.

Figure 4 shows the WERs on the development set obtained
by FEmulti having five layers trained with different values of λ
coupled with the clean back-end. Note that the case of λ = 0.0
is equivalent to FEenh with five layers2. We see that the best
performance is obtained with λ = 0.5 and understand that two
targets equally contribute to improving the ASR performance.
The recognition results for FEmulti trained with λ = 0.5 on
the real evaluation set are shown in row (4) in Table 1, which
are significantly better than the baseline results.

In Table 2, we show the results obtained with the matched
acoustic models (multi-condition noisy model, beamformed
model). We see that the matched models without any DNN
front-end processing already yields slightly better results than
the clean models coupled with FEmulti, the multi-target trained
front-end DNN, confirming that the matched training data is in-
deed effective for acoustic modeling and should be used for
baseline when available. We do not show here the results
with FEadap, because feature-space adaptation to the matched
model does not really make sense and did not yield any im-
provement in fact. Significantly different tendencies from Ta-
ble 1 are observed for the results with FEenh. The recognition
performance with the matched models is drastically degraded
when combined with FEenh, which clearly reveals the limita-
tion of the DAE we mentioned in Section 2.1. In contrast, we
see from the results with FEmulti (row (3) in Table 2) that we
can prevent the problem effectively by incorporating the acous-
tic model target. We obtained an even better result than the
matched model alone, particularly for the beamformed test data.

4.3. Effect of unified network training

We initialized a unified network by connecting a multi-target
trained front-end and a back-end DNN, and re-trained it using
the procedure described in Section 3.2 for both noisy and beam-
formed training data using clean data as a regression target for
the front-end part. In the recognition time, the output of the
front-end part is normalized to have zero mean and unit vari-
ance. For comparison, we also re-trained only the back-end
using training data enhanced by FEmulti.

In rows (5) and (6) in Table 1, we show the results for

2Similarly, FEmulti with λ = 1.0 is equivalent to FEadap, but the
training of the adaptation DNN was not converged when the number of
layers was five, and we excluded the result with λ = 1.0.
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Figure 4: Effect of λ for multi-target front-end DAE training

the back-end re-training and the proposed unified training com-
bined with the clean back-end. We used λ = 0.5 and γ = 0.05
here again for consistency. We see that the unified training
yields significant improvements in both conditions, while the
back-end re-training degraded the accuracy in the ”beam” con-
dition. For comparison, we conducted another unified train-
ing experiment without feeding the clean speech features to
the interface layer, and in this case, the WER was increased
to 22.47% from 18.09% in the ”beam” condition, which clearly
shows that the clean data constraint plays a critical role in the
unified training.

We also show the results with the matched back-end acous-
tic models in Table 2. From rows (4) and (5), we see that the
proposed unified training method improves the performance of
the matched models, while simple back-end re-training only de-
grades the performance.

5. Related works
Giri et al. [35] applied multi-task learning of DNN for senone
classification with a secondary task of feature enhancement.
Huang et al. [36] conducted feature enhancement as the primary
task in the multi-task learning. Chen et al. [37] used an LSTM-
based front-end in a similar approach. While these multi-task
learning framework uses a specific output branch and objective
function for each task after the shared hidden layers, in this pa-
per we have demonstrated that a network with single output can
be directly trained with multiple targets. The proposed method
stacks the front-end DAE and the back-end DNN with a unified
objective function which leads to consistent improvement for
each DNN.

6. Conclusion
In this paper, we have proposed a multi-target learning method
for deep neural networks for speech enhancement and classi-
fication, and evaluated its effectiveness through the CHiME3
Challenge ASR task. The contribution of the front-end DAE
to the back-end classification was improved by incorporating
the secondary classification target into its training objective.
Furthermore, the classification performance of the entire net-
work was also improved by the effective use of the secondary
enhancement target in the training. We are interested to see
how the proposed method contributes to obtain a state-of-the-
art performance when combined with 5-gram and RNN lan-
guage models and fMLLR features for DNNs. We are also in-
terested to incorporate the sequence discriminative criterion for
the training of the back-end part for further performance im-
provement.
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