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Abstract

Recently, neural networks have been used for not only phone
recognition but also denoising and dereverberation. However,
the conventional denoising deep autoencoder (DAE) based on
the feed-forward structure is not capable of handling very long
speech frames of reverberation. LSTM can be effectively
trained to reduce the average error between the enhanced sig-
nal and the original clean signal by considering the effect of
the long past time frames. In this paper, we demonstrate that
considering as long as the maximum reverberation time of the
database is effective. Since the effect of reverberation varies
depending on the phone-class of the whole speech context, we
augment the input of the autoencoder with the phone-class in-
formation of the past frames as well as the current frame and call
this version of the LSTM autoencoder pLSTM. In the speech
recognition experiment using the data set of Reverb Challenge
2014, the LSTM front-end reduced the WER of the multi-
condition DNN-HMM by 14.5%, and the use of the phone class
feature yielded in pLSTM further improvement of 7.5%. The
performance with the pLSTM is comparable to that of pDAE,
while the number of parameters is only 1/25-1/8.

Index Terms: Speech Dereverberation, Long Short-Term
Memory (LSTM), Deep Autoencoder (DAE)

1. Introduction

In recent years, the speech recognition technology based on sta-
tistical techniques achieved a remarkable progress supported by
the ever increasing training data and the improvements in the
computing resources. Applications such as voice search are
now being used in our daily life. However, speech recognition
accuracy in adverse environments such as those with reverber-
ation and background noise is still at low levels. A key break-
through for the speech recognition technology to be accepted
widely in the society will be the methodology for hands-free
input. This is critical for realizing conversational robots, for ex-
ample. Speech reverberation adversely influences the recogni-
tion accuracy when the microphone is distant and various efforts
have been made to solve this problem.

This paper focuses on the front-end feature enhancement
for reverberant speech recognition. One of the simplest ap-
proaches to feature enhancement is the cepstral mean normal-
ization (CMN) [1]. However, since reverberation time is usu-
ally longer than the frame window length for feature extraction,
its effectiveness is limited. More sophisticated enhancement
techniques include deconvolution approaches that reconstruct
clean speech by inverse-filtering reverberant speech [2][3][4]
and spectral enhancement approaches that estimate and remove
the influences of the late reverberation [5][6].

Recently, following the great success of deep neural net-
works (DNN), dereverberation by deep autoencoders (DAE) has
been investigated [7][8][9]. In these works, DAEs are trained
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using reverberant speech features as input and the clean speech
features as target so that they recover the clean speech from
corrupted speech in the recognition stage. In [10], we pro-
posed to use phone-class features as well as acoustic features
for the DAE-based dereverberation, and showed that it improves
speech recognition performance.

While DAEs have a vertically deep structure and effectively
learn the complicated mapping, they can exploit only local con-
text information with limited time windows. The reverberant
time is often long. Using very long context information, how-
ever, makes the number of parameters of the DAE so large that
it cannot be reliably trained. Moreover, it is difficult to uti-
lize the phone-class information of the past frames in the DAE
framework, while they may be useful for recovering the clean
data. One possible solution is to use Recurrent Neural Net-
works (RNNs), which can perform sequential information pro-
cessing in a compact representation. But conventional RNNs
have fundamental shortcomings that they cannot learn to find
very long-term dependencies because of the vanishing gradient
problem [11]. For example, the reverberation time of the large
room in the Reverb Challenge 2014 [12] is 0.7 seconds (= 70
frames in the usual setting), and it may be too long for RNNs to
adequately handle it.

The Long Short-Term Memory (LSTM) architecture [13]
was introduced to overcome the vanishing gradient problem
by enforcing a constant error flow through the special units
called Constant Error Carousels. Recently, LSTMs have
been applied to several tasks in the speech processing area
([14][15]1[16][17]1[18][19][20][21][22][23][24][25][26]), and
yielded comparable to or even better results than DNNs without
any pre-training and high dimensional spliced feature vectors
as input. In this paper, we explore the speech dereverberation
using the LSTM [16] and propose to use the phone-class
information for this LSTM-based dereverberation.

After a brief review on the DAE-based front-end derever-
beration and the phone-class feature in Section 2, the detail of
the proposed LSTM-based method is explained in Section 3.
Experimental evaluations of the method are presented in Sec-
tion 4 before the conclusion in Section 5.

2. DAE-based dereverberation
2.1. Deep Autoencoders (DAE)

The combination of DNNs for phone state classification and tra-
ditional HMM acoustic models has yielded a dramatic improve-
ment in speech recognition accuracies [27][28][29][30]. DNNs
are also applied to front-end feature enhancement in the robust
speech recognition area [31][7][8][16][32][33]. DNNs used for
regression tasks such as speech enhancement are often called
deep autoencoders (DAEs) [34]. Unlike DNNs for classifica-
tion, DAEs are typically trained to reconstruct signals by using
the mean squared error (MSE) as the loss function [35]. A DAE
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Figure 1: Feature enhancement by pDAE using soft phone class
features

has a vertically symmetric network structure and each layer is
initialized by an RBM [34].

DAE:s for dereverberation are trained using the clean speech
features as target and the reverberant speech features as input.
In [9], we investigated reverberant speech recognition based on
DAE front-end coupled with DNN acoustic model. Since the
dereverberation using the DAE is performed not at the STFT
level ([7]) but at the feature level ([8][16]) in our system, we
can directly feed the DAE output to the DNN-HMM acoustic
model. The input feature vector of DAE at frame ¢, th AE s
consists of multiple frames of filterbank output,

DAE
Ty

[at,5,at,4,...,at,...,at+4,at+5], (l)

where a is the acoustic feature (filterbank output) at frame ¢.

2.2. Augmentation with phone-class feature

The mapping from corrupted data to the clean data is conven-
tionally conducted only with the acoustic information. Since
the acoustic features in clean speech vary depending on phones,
the phone-class information is helpful for the DAE to recover
the clean speech from corrupted speech, as we showed in [10].
While we compared four different types of phone-class features
in [10], we use only the soft feature PC's, ¢ in this paper, which
brought significant improvement without an additional recog-
nition pass. PC..f; is derived from the posterior outputs of
monophone DNN. DAE using the PC',; feature is illustrated
in Figure 1. We call the DAE augmented with the PCj, s fea-
ture pDAE, hereafter. The input feature of the pDAE is defined
as

DAE
Ty

DAE
; = |

Py @

Here, p, is the phone-class feature for frame ¢.

3. LSTM for dereverberation
3.1. Long Short-Term Memory (LSTM)

An LSTM network (Figure 2) computes a mapping from an
input sequence ® = (x1,...,z7) to the cell output sequence

monophone HMM states
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Figure 2: Long Short-Term Memory (LSTM)

m = (maq, ..., mr) iteratively, unlike feed-forward networks
which compute the output of each frame independently. The
mapping is obtained by calculating the network unit activations
using the following equations iteratively from ¢t = 1 to 7"

1t = oc(Wizxe + Wimmu—1 + Wissi—1+ b;)  (3)
Fi=0Wsae + Wemmi—1 + Wyssio1 +br) (4

st =f, ©si—1 + 1 © tanh(Wz s + Wemme—1 + be)  (5)
ot = c(Wore + Wommi—1 + Wosst + bo)  (6)

m: = 0; © tanh(s:) (7)

where W... denotes a weight matrix (e.g. W;, is the matrix of
weights from the input gate to the input) and b. denotes a bias
vector (e.g. b; is the input gate bias vector). o is the logistic
sigmoid function. ¢, f, o and s are the input gate, forget gate,
output gate and cell activation vectors, respectively. m is the
cell output activation vector. ® is the element-wise product of
the vectors.

Since the LSTM is free from the vanishing gradient prob-
lem, it can work even when there are very long delays. Another
important advantage of the LSTM is that it can handle signals
that have a mix of low and high frequency components due to
the existence of three kinds of gate units. Therefore, the LSTM
trained using multi-condition data is expected to be able to per-
form dereverberation adaptively whether the reverberation time
of the test utterance is short or long.

3.2. LSTM-based dereverberation

The network for regression tasks such as dereverberation can be
built by stacking the output layer with identity activation func-
tion on the top of the LSTM layer. Figure 3 illustrates the fea-
ture enhancement by using a 2-layer LSTM and an output layer.
The enhanced feature a$™" is calculated using the cell output
m by the following equation.

afnh

= Woutputmt + boutput (8)
where Wouiput and bouput are the weight matrix and the bias
vector of the output layer, respectively. The input vector of the
LSTM for frame ¢ is identical to the acoustic feature of the cur-
rent frame.

LSTM
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Figure 3: Feature enhancement using 2-layer LSTM

The training of the network is performed by backpropaga-
tion through time (BPTT) using the mean squared error between
the enhanced feature a¢™" and the original clean feature a¢'"
as the loss function. Ideally the gradients used for the stochas-
tic gradient descent algorithm are calculated using inputs of
all speech frames from 7 = 1 to ¢, but it is actually infeasi-
ble. Therefore, we exclude frames which are more distant from
t than the fixed number T}, from the calculation (truncated

BPTT). The loss function is defined by the following equation.

t

>

T=t—Thpes+1

enh cln

las™" — a;

L= k

10)

The speech frames more distant than T3, from ¢ does not
affect the error of the current frame. Therefore, T3, should
be adequately determined in accordance with the reverberation
time of the speech database.

The LSTM-based dereverberation network can also use the
phone-class feature as input, and the input vector of this aug-
mented model (pLSTM) is defined as

LSTM
@y

[mLST]M
t

s Py (11)
With the recurrent architecture, phone-class information of the
past speech frames is considered as well as the current frame,
which was difficult in the feed-forward DAE framework.

4. Experimental evaluation
4.1. Task and data set

The proposed system was evaluated following the instructions
for the task of the Reverb Challenge 2014 [12]. For training,
we used the standard multi-condition data that is generated by
convolving clean WSJCAMO data with room impulse responses
(RIRs) and subsequently adding noise signals. The amount of
the training data is 15.5 hours (7,861 utterances). Evaluation
data consists of “SimData” and “RealData”. SimData is a set of
reverberant speech generated by convolving clean speech with
various RIRs and adding measured noise signals to make the re-
sulting SNR to be 20dB. RIRs were recorded in three different-
sized rooms (small, medium, and large) and with two micro-
phone distances (near=50cm and far=200cm). The reverbera-
tion time (T60) of the small, medium, and large rooms are about
0.25s, 0.5s, and 0.7s, respectively. RealData was recorded in a
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different room from those used for measuring RIRs for Sim-
Data. It has a reverberation time of 0.7s. There are two mi-
crophone distances in RealData, which are near (=100cm) and
far (=250cm). In the experiments in this paper, we only use
a single channel data both for training and testing. For de-
coding, we used the HDecode command from HTK-3.4.1 with
a small modification to handle DNN output. The language
model we used is the standard WSJ 5K trigram model. The
triphone DNN-HMM acoustic model with 3,117 shared states
was trained using the multi-condition data. The monophone
DNN with 135 states was also trained for the calculation of the
phone-class feature. The acoustic feature used in all models is
40-channel log Mel-scale filterbank outputs.

The baseline DAE has six layers in total including five sig-
moidal hidden layers. The number of nodes in each layer is
2,048 except for input and output layers. The detail of the DAE
training is described in [9].

4.2. Training of LSTM model

We trained the LSTM model using the multi-condition data by
the truncated BPTT algorithm described in Section 3.1. The
number of the memory cells was 400. The initial learning rate
was set to be 0.1, and it was halved if the improvement in the
frame accuracies on the heldout set calculated with the triphone
DNN between two consecutive epochs fell below 0.2%. The
training was stopped after 20 epochs. The momentum was set
to be 0.4. The weights in all the networks are initialized to the
range (-0.08, 0.08) with a uniform distribution. For increasing
throughput, we introduced the mini-batch based parallelization.
Each mini-batch consists of 128 utterances. The unit activa-
tions for each utterance can be independently calculated as ma-
trix operations using GPGPUs. We managed so that the length
of the utterances in the same mini-batch is similar in order to
maximize the efficiency of the parallelization. The gradient cal-
culated by the truncated BPTT was divided by the product of
mini-batch size and T3¢ Since the gradient can sometimes
explode in the training of LSTMs, we used hard constraint over
the norm of the gradient so that it never exceed 15.0. We per-
formed the gradient calculation and weight update once per five
frames.

We compared three different values for T5¢¢, 25, 50 and 70,
which correspond to the reverberation time of the three types of
rooms used in the training corpus. Figure 4 plots the change
of the training error over epochs for the LSTMs with different
Typtt. The LSTM with the largest T3¢+ achieved the lowest
mean squared error. From these results, we understand that the
speech frames as distant as the largest reverberation time in the
corpus can affect the dereverberation of the current frame.

Figure 5 shows the change of the mean squared error on the
training data for the standard LSTM, the LSTM augmented with
the phone-class feature (pLSTM) and the pLSTM with 2-layers.
As shown in the figure, the use of the phone-class information
contributed to the drastic reduction in the error. The increase of
the number of LSTM layers yielded a further improvement.

4.3. Evaluation on simulated reverberant data

We evaluated the dereverberation front-end models using the
simulated reverberant test data (SimData) in the Reverb Chal-
lenge 2014.

First, we evaluated the mean squared error (MSE) between
the original clean feature and the enhanced feature obtained by
LSTMs with different T,,:;. Figure 6 shows the MSE on each
condition in SimData. As expected from the errors in the train-
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Figure 5: Training data errors by LSTM and pLSTM

ing stage, the LSTM with the T}, which corresponds to the
longest reverberation time in the corpus achieved the smallest
MSE in all conditions, except for Middle-Near. From the fig-
ure, we see that the LSTM trained using the multi-condition
data with a large T}, can perform dereverberation adaptive to
the degree of the reverberation in the test utterance.

The average MSE and word error rate (WER) on SimData
by all models including the baseline DAE and pDAE are shown
in Table 1. When using only standard acoustic features (fil-
terbank outputs) as input, the performance of the LSTM was
not as good as the baseline DAE both on the MSE and WER.
However, when the input was augmented with the phone-class
feature, the LSTM (pLSTM) yielded comparable results to the
DAE (pDAE). These results suggest that the past phone-class
features as well as the current one are working effectively in the
LSTM framework.

4.4. Evaluation on real reverberant data

We conducted speech recognition experiments using the real re-
verberant test data (RealData) of the Reverb Challenge 2014.
Note that the microphone distances in RealData are much dif-
ferent from those in the training data and the recognition of Re-
alData is much harder than SimData. The WERs obtained by
all models are shown in Table 2.

The LSTM front-end improved the WER of the multi-
condition DNN-HMM by relative 14.5%, and the use of the
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Table 1: Mean squared error (MSE) and word error rate (WER)
on SimData

Front-end # of params SimData

MSE | WER (%)

| (no enhance) [ - H 13.8 [ 8.74 ‘

DAE (6 layers) 17.8M 5.50 10.62
pDAE (6 layers) 18.0M 5.17 9.87
LSTM (I layer) 0.72M 6.08 12.07
pLSTM (1 layer) 0.94M 5.25 9.74
pLSTM (2 layers) 2.22M 5.08 9.89

Table 2: Word error rate on RealData (WER (%))

Front-end # of params RealData
Near [ Far | Ave.

[ (no enhance) [ - [l 28.59 [ 30.87 [ 29.67 |
DAE (6 layers) 17.8M 2437 | 25.52 | 24.93
pDAE (6 layers) 18.0M 23.47 | 23.09 | 23.29
LSTM (1 layer) 0.72M 25.68 | 25.02 | 25.36
pLSTM (1 layer) 0.94M 24.62 | 24.44 | 24.53
pLSTM (2 layers) 2.22M 23.19 | 23.70 | 23.45

phone-class feature yielded further 7.5% relative improvement.
Both of these improvements are statistically significant at the
1% level. We understand that the performance of the LSTMs
is as good as the baseline DAEs, although the number of pa-
rameters is much smaller (1/25-1/8). It is noteworthy that the
improvement obtained by the augmentation with the phone-
class feature was larger for the LSTM (7.5%) than for the DAE
(6.5%).

5. Conclusion

This paper presented our initial results for the LSTM-based
dereverberation with the phone-class feature. The LSTM ar-
chitecture achieved comparable dereverberation performance to
the strong baseline DAE with an order of magnitude smaller
number of parameters. We also show that the phone-class fea-
ture in the long context effectively improved the performance.
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