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ABSTRACT

We propose an approach to reverberant speech recognition adopt-

ing deep learning in front end as well as back end of the system. At

the front end, we adopt a deep autoencoder (DAE) for enhancing the

speech feature parameters, and speech recognition is performed using

a DNN-HMM acoustic models at the back end. The system was eval-

uated on simulated and real reverberant speech data sets. On average,

the DNN-HMM system trained on the multi-condition training data

outperformed the MLLR-adapted GMM-HMM system trained on the

same data. The feature enhancement with the DAE contributed to the

improvement of recognition accuracy especially in more adverse con-

ditions. We also performed an unsupervised adaptation of the DNN-

HMM models to the test data enhanced by the DAE and achieved im-

provements in word accuracies in all reverberation conditions of the

test data.

Index Terms— reverberant speech recognition, Deep Neural Net-

works (DNN), Deep Autoencoder (DAE)

1. INTRODUCTION

In recent years, the speech recognition technology based on statisti-

cal techniques achieved a remarkable progress supported by the ever

increasing training data and the improvements in the computing re-

sources. Applications such as voice search are now being used in our

daily life. However, speech recognition in adverse conditions is still a

difficult task and the recognition accuracies in adverse environments

such as those with reverberation and background noise are still staying

at low levels.

A key breakthrough for speech recognition technology to be ac-

cepted widely in the society will be the establishment of the method-

ology for easier speech interface with hands-free input. Speech re-

verberation adversely influences the speech recognition accuracy in

such conditions and various efforts have been made to improve the

recognition performance for the reverberant speech.

Reverberant speech recognition has so far been tackled by apply-

ing feature enhancement at the front end, and by attempting model

adaptation and the use of more sophisticated recognition techniques.

Speech enhancement techniques include deconvolution approaches

that try to reconstruct clean speech by inverse-filtering the reverberant

speech [1][2][3] and spectral enhancement approaches that estimate

and remove the influences of the late reflection [4][5]. Since an im-

provement measured by SNR may not be directly related to the speech

recognition accuracy, there also are approaches to speech enhance-

ment based on speech recognition likelihoods in the back end [6].

One of the simplest approach to feature enhancement is the cepstral

mean normalization (CMN) [7]. However, since reverberation time

is usually larger than the frame window length for feature extraction,

its effectiveness is limited. A major back end approach is the use of

maximum-likelihood linear regression (MLLR) [8] that tries to adapt

the acoustic model parameters to the corrupted speech.

In this paper, we take an approach to reverberant speech recog-

nition based on deep learning, which has been drawing much atten-

tion in the speech research community. Recognition of reverberant

speech is performed combining “standard” DNN-HMM [9] decoding

and a feature enhancement through deep autoencoder (DAE) [10][11].

The combination of the DNN classifier and the DAE can be regarded

as a single DNN classifier with a very deep structure. However, we

can expect a mutually complementary effects from the combination

of two networks that are optimized toward different targets. We have

so far seen few practices of applying deep neural network technology

to LVCSR in the adverse conditions such as reverberant and noisy

speech, and this paper presents some interesting results on the effect

of DNNs combined with DAEs.

2. ASR TASK IN REVERB CHALLENGE

The proposed system was evaluated following the instructions for the

ASR task of the Reverb Challenge 2014 [12].

For training, we used the standard multi-condition data that is

built by convolving clean WSJCAM0 data with room impulse re-

sponses (RIRs) and subsequently adding noise signals. Evaluation

data consists of “SimData” and “RealData”. SimData is a set of re-

verberant speech simulated by convolving clean speech with various

RIRs and adding measured noise signals to make the resulting SNR

to be 20dB. RIRs were recorded in three different-sized rooms (small,

medium, and large) and with two microphone distances (near=50cm

and far=200cm). The reverberation time (T60) of the small, medium,

and large rooms are about 0.25s, 0.5s, and 0.7s, respectively. These

rooms are different from those for measuring RIRs used in generating

multi-condition training data. RealData was recorded in a different

room from those used for measuring RIRs for SimData. It has a re-

verberation time of 0.7s. There are two microphone distances with

RealData, which are near (≈100cm) and far (≈250cm). Utterance

texts for both SimData and RealData were chosen from WSJCAM0

prompts. All the reverberant speech recordings were made with eight

microphones. In the experiments in this paper, however, we only use

a single channel both for training and testing. The speech recognition

performance is measured by word error rate in a 5k vocabluray speech

recognition task.

3. DNN-HMM

Pattern recognition by neural networks has a long history [13]. In

recent years, deep neural networks (DNN) has been drawing much at-

tention again in the pattern recognition field due to the establishment

of an effective pre-training methodology [14] and the dramatic im-
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provement of computing power and the increase of available training

data. It has also been applied to speech recognition combined with

hidden Markov models (HMM) and reported to achieve significantly

higher accuracy than conventional GMM (Gaussian Mixture Model)-

HMM technology in various task domains [15][16][9][17].

There has so far been two typical ways to combine DNNs and

HMMs. In one approach, the state emission probabilities are com-

puted using DNNs instead of the conventional Gaussian mixture mod-

els (GMMs). In the other approach, the output from DNNs are utilized

as input to conventional GMM-HMMs. The former is called the hy-

brid approach [16][9][17] and the latter is called the TANDEM ap-

proach [18][19][20]. In this paper, we build acoustic models adopting

the hybrid approach, which has a simple structure and therefore easy

to handle and has been shown to be effective in many task domains.

We call these acoustic models built with hybrid approach as DNN-

HMM hereafter in this paper.

In the training of DNNs, the standard error backpropagation train-

ing from randomly initialized states often does not yield the expected

results due to the very little changes especially in the lower layer pa-

rameters caused by the repeated multiplications of the values smaller

than one. Therefore, we opt to initialize the network weights in a

better way by unsupervised generative training before the supervised

discriminative training [14].

In the first place, each layer of the network is trained as a restricted

Boltzmann machine (RBM) independently. Next, these RBMs are

stacked together to constitute a deep belief network (DBN). An ini-

tial DNN is then established by adding a randomly initialized softmax

layer. This DNN is trained in a supervised way through error back-

propagation using HMM state IDs as labels.

It has been a standard practice to train the neural networks for

DNN-HMMs independently of other components of the HMM mod-

els. The model parameters other than the DNN components are

usually copied from well-trained GMM-HMMs, for example, those

trained according to the minimum phone error criterion. The state la-

bels are also usually generated by the forced alignments using those

GMM-HMMs.

4. SPEECH FEATURE ENHANCEMENT BY DEEP

AUTOENCODERS

The DNN structure described in the last section can be utilized as

a deep autoencoder (DAE) when trained for a different target [21].

In this case, the lower layers are regarded as an encoder to obtain

an efficient code and the upper layers are regarded as a decoder that

“reverses” the encoder. As a whole, a DAE has a vertically symmetric

network structure.

Initialization by RBM training is very important with DAEs as

well. However, each of the networks in the decoder layers are initial-

ized with the same RBM in the encoder-layer counterpart. In decoder

layers, network weights are initialized as the transpose of those used

for the correspondent encoder layer network and biases are initialized

using visible biases from RBMs rather than hidden biases that are used

for the encoder layers.

This DNN with a symmetric structure can be used as a denoising

autoencoder when input is a corrupted data and the target is the clean

data [22]. It is trained to recover the clean data from the corrupted

data. Other than the input and the target, the training algorithm is the

same as the ordinary DAEs [23].

5. EXPERIMENTAL EVALUATIONS

Experimental evaluations were performed for DNN-HMMs and DAEs

described in the previous sections using evaluation data for Reverb

Challenge [12].

In all of the experiments presented below, only single channel

data was used for training and testing. For training, we used the 7,861

utterances of multi-condition data, which was also the training data

for multi-condition baseline GMM-HMM models. For decoding, we

used the HVite command from HTK-3.4 with a small modification to

handle DNN output. The language model we used is the baseline lan-

guage model supplied in the Reverb Challenge. Decoding parameters

such as beam widths are set to be the same for GMM-HMM system

and DNN-HMM system. Since the “likelihood” scores have different

ranges, the language model weights and insertion penalties are inde-

pendently optimized for each system.

The evaluation results obtained with the baseline GMM-HMM

system are shown in Table 1, rows 1 through 3.

5.1. DNN-HMM

Here we describe the details of the DNN-HMM system we used for

the evaluation experiments.

A 1320-dimensional feature vector consisting of eleven frames of

40-channel log Mel-scale filter bank outputs and their delta and accel-

eration coefficients is used as the input to the network. The targets are

chosen to be the 3,113 shared states of the baseline GMM-HMMs.

The six-layer network consists of five hidden layers and a softmax

output layer. Each of the hidden layers consists of 2,048 nodes. The

network is initialized using the RBMs trained with reverberant speech.

The fine-tuning of the DNN is performed using cross entropy as

the loss function by error backpropagation supervised by state IDs

for frames. The mini-batch size for the stochastic gradient descent

algorithm was set to be 256. The learning rate was set to be 0.08 ini-

tially and exponentially decayed over the sequence of mini-batches.

The momentum was set to be 0.9. The training was stopped after 20

epochs. The state labels for the frames were generated by the forced

alignment of clean data with HVite command of HTK3.4 using the

baseline GMM-HMM acoustic models trained on MFCC feature pa-

rameters of clean data. The HMM model parameters other than emis-

sion probabilities such as transition probabilities were copied from the

baseline GMM-HMM models.

The word error rates for the evaluation data set obtained with the

DNN-HMM system trained using multi-condition data are shown in

the seventh row of Table 1. For all subsets of the “SimData” part of

the evaluation set, the DNN-HMM system achieved drastically higher

accuracies than the adapted GMM-HMM system. In the most ad-

verse condition (Room 3, Far), word error rate was reduced by 15.9

points (from 39.28% to 23.34%). With the “RealData” subsets, the

DNN-HMM system achieved higher accuracies than the non-adapted

GMM-HMMs, and comparable accuracies with the adapted GMM-

HMMs.

The DNN-HMM system was trained on the clean training set as

well as the multi-condition training set. The word accuracies obtained

with this clean DNN-HMM system are shown in the fourth row of

Table 1. As seen in the table, the accuracies by the clean DNN-HMMs

are drastically lower than the multi-condition DNN-HMMs. We see

that the multi-condition training is effective for DNN-HMMs as well

as GMM-HMMs from these results.

We also performed evaluation experiments on clean speech (“Cln-

Data”). The word error rates for the clean versions of the evaluation

set obtained with the baseline GMM-HMM systems are shown in rows

1 through 3 of Table 2. The results with the multi-condition DNN-

HMM system is shown in the fifth row. We see that the accuracies for

clean speech deteriorate significantly with the GMM-HMMs trained

using multi-condition data. Meanwhile, the results obtained by DNN-

HMMs trained using multi-condition data were as good as those with

2
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Table 1. System performances on the test data (word error rate (%))

SimData RealData

Room 1 Room 2 Room 3 Ave. Room 1 Ave.

Proc. Scheme Near Far Near Far Near Far Near Far

(1) Baseline (clean, w/o CMLLR) 18.26 25.60 41.87 82.20 53.59 87.99 51.73 89.91 87.58 88.74

(2) Baseline (multicond, w/o CMLLR) 21.28 21.18 23.12 38.83 28.24 44.77 29.56 58.96 55.60 57.28

(3) Baseline (multicond, w CMLLR) 16.57 18.21 20.31 32.43 24.86 39.28 25.27 50.37 48.01 49.19

(4) DNN-HMM (clean) 12.37 18.49 26.05 57.13 35.37 72.05 36.95 77.26 76.2 76.74

(5) DAE + DNN-HMM (clean) 9.73 10.79 12.06 22.95 13.60 25.85 15.85 53.98 51.38 52.72

(6) DAE(120) + DNN-HMM (clean) 9.32 10.71 12.46 23.04 13.24 26.09 15.84 52.89 51.38 52.16

(7) DNN-HMM (multicond) 10.25 10.59 12.91 21.37 14.14 23.34 15.46 49.25 48.08 48.68

(8) DAE + DNN-HMM (multicond) 14.22 14.20 13.30 19.46 14.01 18.75 15.67 45.48 45.21 45.35

(9) DAE(120) + DNN-HMM (multicond) 14.33 14.18 13.09 19.63 15.10 19.57 15.99 45.61 44.63 45.13

(10) DAE + DNN-HMM (multicond) + adap. 11.11 11.79 11.80 16.59 12.49 17.13 13.50 39.67 41.09 40.36

(11) DAE + DNN-HMM (retrain) 9.74 9.98 11.80 20.69 13.50 22.81 14.77 48.42 48.85 48.63

Table 2. System performances on clean data (word error rate (%))

ClnData

Room 1 Room 2 Room 3 Ave.

Proc. Scheme

(1) Baseline (clean, w/o CMLLR) 13.01 12.69 12.23 12.64

(2) Baseline (multicond, w/o CMLLR) 30.92 30.28 30.17 30.46

(3) Baseline (multicond, w CMLLR) 16.25 15.28 15.37 15.63

(4) DNN-HMM (clean) 7.51 7.67 7.25 7.48

(7) DNN-HMM (multicond) 10.69 10.27 10.65 10.53

the GMM-HMMs trained using clean data.

The accuracies by the clean DNN-HMMs (Table 2, row 4) were

better than the multi-condition DNN-HMMs, although the difference

between them were not as large as the difference between the clean

and multi-condition GMM-HMM systems.

5.1.1. Best-matched condition training

In general, multi-condition training is an effective strategy, since the

run-time reverberation condition is unknown in the system develop-

ment time. However, the part of the training data with mismatched

reverberation conditions from the run time may cause an adverse ef-

fect on the accuracy. Therefore, we could expect a better performance

if we can prepare multiple models trained with single reverberation

conditions and choose a best-matched one at the run time in some

way, although the choice of the best-matched model at run time itself

is a non-trivial research issue.

To understand the possible effectiveness of this approach, we

trained DNNs with simulated training data that would match the “Re-

alData” part of the evaluation data. We generated two simulated train-

ing data sets using the RIR for “Near” and “Far” microphone distances

in “Large” room. Each of the resulting training sets has the same size

as the whole multi-condition training set. The experimental results are

shown in Table 3.

As seen in the table, the word accuracy for “RealData”-“Near” as

well as “RealData”-“Far” is improved with the “Large”-“Far” model.

However, the accuracy for “RealData”-“Near” is degraded with the

“Large”-“Near” model. Although both labeled “Near”, the micro-

phone distances of 50cm in “Large”- “Near” (training) and 100cm

in “RealData”-“Near” (test) seem to have made a big difference in the

reverberated speech.

From these preliminary experimental results, we see that the

recognition performance may, at times, improve with “the collection

of single condition models” approach, when there happens to be a

single-condition model that matches the run-time condition very well.

On the other hand, the selected single condition model can yield ac-

curacies much worse than multi-condition models when the match of

the conditions is not good enough.

Table 3. Performances of single condition DNN-HMMs on RealData

(word error rate (%))

RealData

Room 1

Proc. Scheme Near Far

(7) DNN-HMM (multicond) 49.25 48.08

(12) DNN-HMM (Large Near) 55.06 51.82

(13) DNN-HMM (Large Far) 46.60 44.77

5.2. Denoising deep autoencoder

The input and the target for the denoising autoencoder (DAE) were

set to be the eleven-frame sequence of 40-channel log Mel-scale filter-

bank features with their delta and acceleration parameters. The DAE

is fine-tuned using reverberant speech as the input and clean speech

as the target. The input frames and the output frames for the train-

ing were adjusted to be time aligned in the multi-condition training

data generation process. The last portions of reverberant speech utter-

ance files exceeding the length of the clean speech were trimmed to

equalize the lengths of input and output.
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The autoencoder network has six layers in total consisting of three

encoding layers and three decoding layers. The number of nodes in

each layer is set to be 2,048 except for input and output layers. The

network is initialized using the same RBMs as used for initializing

the DNNs described in the last subsection which were trained using

reverberant speech. The encoding layers were initialized using the

weights of first three RBMs and the hidden unit biases. The decoding

layers were initialized using the transpose of the weights mentioned

above and the visible unit biases.

The fine tuning of the DAE was performed by error backpropaga-

tion with squared error as the loss function. The parameters such as

the mini-batch size and the momentum are set to be the same as those

for DNN training. However, initial learning rate was set to be 0.001,

which is smaller than the one for DNN training.

The evaluation results with the combination of the DAE and the

clean DNN-HMM is shown in Table 1, row 5. The accuracies are dras-

tically improved in all conditions from the clean DNN-HMM with-

out DAE (row 4 of the same table) and we understand that the DAE

has done an effective feature enhancement as expected. Interestingly,

these results are comparable to those from the multi-condition DNN-

HMM without DAE (Table 1, row 7) and slightly better in some con-

ditions.

The results with the combination of the DAE and the multi-

condition DNN-HMM are shown in Table 1, row 8. Although we see

degradations in the word accuracy with the conditions “SimData”-

“Room 1” (a small room) and “Room 2” (a middle-sized room),

“Near” from the multi-condition DNN-HMM without the DAE, the

accuracies are improved with all other conditions, especially drasti-

cally in more adverse conditions such as “Far” microphone conditions

of “Room 2” (middle-sized) and “Room 3” (large) as well as “Real-

Data” conditions. The accuracies by the combined DAE and multi-

condition DNN-HMM system turned out to be higher than the MLLR-

adapted GMM-HMM system on average including “RealData” condi-

tion.

The speech feature parameters “enhanced” by the DAE may have

different characteristics from the original reverberant speech.

Therefore, we retrained the DNN using the DAE output and per-

formed speech recognition experiments. This time, the RBMs for ini-

tializing the network were trained using the DAE output as training

data.

The word error rates obtained using this retrained network are

shown in Table 1, row 11. We see that the deterioration of the word

accuracies for “SimData”, “Room 1” is ameliorated but improvements

of the accuracies are not seen mostly in other conditions.

Overall, retraining of the DNN using the DAE-enhanced data was

not effective and the combination of the DAE and the DNN trained

using multi-condition data was more robust for severely reverberant

speech.

5.2.1. Autoencoder target options

In the experiment above, the DAE was trained with the 11 frames

(the center frame and the five frames before and after it) of filterbank-

based feature parameters as target. However, there may not be enough

information in the input to enhance the left frames, especially in the

long reverberation time conditions. Therefore, we also trained the

DAE with only the center frame as target. In this experiment, we

trained the DAE with the 11 frames of feature parameters (1320 di-

mensions in all) as input and the center frame feature parameters (120

dimensions) as target. The enhanced frames are concatenated to con-

stitute 11-frame, 1320-dimensional feature parameters to be input to

the DNN-HMM. The evaluation results of this version of DAE com-

bined with the clean DNN-HMM and the multi-condition DNN-HMM

are shown in rows 6 and 9 in Table 1. When combined with the clean

DNN-HMM, the accuracies got a slightly better on average compared

with the DAE that outputs 11 frames of feature parameters (Table 1,

row 5), but the differences were small. On the other hand, when com-

bined with the multi-condition DNN-HMM that can handle reverber-

ated speech, no particular improvements were seen (row 9 vs. row

8).

5.2.2. Unsupervised adaptation of DNN-HMM using enhanced test

data

In order to alleviate the mismatch between the test data enhanced by

the DAE and the DNN-HMM, we explored a way of “adapting” the

DNN-HMM to the test condition. Adaptation of DNN-HMM models

is a topic of ongoing research efforts and statistical techniques such as

MLLR and MAP adaptations [8, 24] for GMM-HMM models are not

established yet. However, it has been empirically known that the ef-

fect similar to model adaptation can be obtained simply by additional

backpropagation training using the test data [25].

We attempted an “unsupervised adaptation” of the DNN-HMM

by ten epochs of additional backpropagation training using test data.

For the purpose of fair comparison with the baseline MLLR-adapted

GMM-HMM system that used the all utternaces within one test con-

dition, which is a combination of room size and microphone dis-

tance [12], we also used all the utterances within a common test condi-

tion. The labels for supervision in backpropagation training were gen-

erated from the recognition results using non-adapted DAE + DNN-

HMM system. The learning rate was set to be rather small value of

0.001.

The results of these adaptation experiments are shown in Table 1,

row 10. It is seen that the word accuracies are improved in all con-

ditions. Looking at the “RealData” part, we see that the errors are

reduced by 10.7 points with “Near” and 6.9 points with “Far” com-

pared with the MLLR-adapted GMM-HMM system (row 3).

6. CONCLUSION

In this paper, we proposed an approach to reverberant speech recog-

nition adopting deep learning in front end as well as back end of the

system and evaluated it through the ASR task (one channel) of Reverb

Challenge 2014.

The DNN-HMM system trained on the multi-condition training

set achieved a conspicuously higher word accuracy on average com-

pared with the MLLR-adapted GMM-HMM system trained on the

same data. Furthermore, feature enhancement with the DAE con-

tributed to the improvement of recognition accuracy especially in the

more adverse conditions. When the DNN-HMM was used without

the DAE front end on “RealData”, it resulted in a comparable per-

formance with the adapted GMM-HMM system. However, it clearly

outperformed the adapted GMM-HMM system when combined with

the DAE. We also performed an unsupervised adaptation of the DNN-

HMM models to the test data enhanced by the DAE and achieved fur-

ther improvements in word accuracies in all reverberation conditions

of the test data.

In this work, the DAE was initialized using the same set of RBMs

as used for the DNN-HMM initialization. The input and output of the

DAE was also defined to be the same set of feature parameters as the

input for DNN-HMM. However, the network structure and the feature

parameters for DAE may be optimized in some criterion to yield better

results and we are looking at these issues as future work.
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