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Abstract—Unsupervised speaker adaptation of Deep Neural
Network (DNN) is investigated for lecture transcription tasks,
in which a single speaker gives a long speech and thus speaker
adaptation is important. The proposed method selects similar
speakers to the test data (test speaker) from the training database,
which are used for retraining the baseline DNN. Several speaker
characteristic features are defined for the speaker similarity
measure. The feature based on Universal Background Model
(UBM) and principal component analysis (PCA) achieves the
best performance, resulting in a significant improvement from the
baseline DNN and also from the adapted GMM-HMM system.
The method is combined with a naive adaptation method using
the initial ASR hypothesis of the test data, and an additional
improvement is achieved.

I. INTRODUCTION

In the past few years, Deep Neural Network (DNN) has
demonstrated to outperform the conventional Gaussian Mix-
ture Model (GMM)-based systems in a variety of automatic
speech recognition (ASR) tasks [1]. We have confirmed that
the DNN-HMM hybrid system achieves significantly better
accuracy with faster decoding turnaround than GMM-HMM
in our (offline) lecture transcription tasks which we address in
this paper. DNN is flexible for handling a large-dimensional
multi-frame feature vector and learning complex decision
boundaries with a cascade of networks.

On the other hand, there is not an effective adaptation
method of DNN to new speakers or environments, except
for retraining the network with new data. This is contrastive
to GMM-HMM that can be adapted with a solid statistical
framework such as MLLR and MAP. Speaker adaptation is
important in lecture transcription tasks because each speaker’s
speech is very long, typically from 15 to 90 minutes. More-
over, an unsupervised adaptation method which works using
the test data is desirable because it is not practical to assume
supervision adaptation data while it is allowed to conduct
decoding the data several times. In the conventional GMM-
HMM systems, speaker adaptation conducted via MLLR or
MAP brings significant improvement of accuracy [2]. In
fact, when speaker adaptation is applied, the performance of
GMM-HMM is almost similar to that of DNN-HMM in our
evaluation sets. However, the same adaptation scheme cannot
be applied to DNN-HMM.

The objective of this study is to investigate effective meth-
ods of unsupervised speaker adaptation for lecture transcrip-
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tion tasks in which a single speaker gives a long speech.
One naive or ideal method is to retrain DNN with the test
data (test speaker) itself. However, since we cannot expect the
correct supervision label for it, it is difficult to predict the
adaptation scheme will work properly. Therefore, we present
a scheme that retrieves training data similar to the current
test data from the training database, which are then used for
retraining DNN. In this paper, we investigate several speaker
characteristic features which are computationally efficient and
thus used for the similarity measure for this unsupervised
adaptation scheme.

After a brief review on the baseline DNN-HMM system and
previous work on speaker adaptation of DNN in Section 2 and
3, the detail of the proposed method is explained in Section 4.
Experimental evaluations of the method are presented in two
different lecture transcription tasks in Section 4. Here, we also
report its combination with the naive retraining method using
the test data.

II. BASELINE DNN-HMM SYSTEM AND PERFORMANCE

A. Baseline DNN-HMM Hybrid System
In this work, we adopt a standard DNN-HMM hybrid

system as the baseline. It is made by replacing all GMMs
of the GMM-HMM system with a single DNN to calculate
emission probabilities of the triphone states. The DNN of
our system is trained with a standard procedure [3][4] .
The number of hidden layers is 7. Each hidden layer has
2048 sigmoidal nodes. The number of output nodes, which
correspond to the tied states of the triphone HMMs, is 3015.
The DNN was initialized with the stacked Restricted Boltzman
Machines (RBMs) pre-trained using the contrastive divergence
(CD1) method, and then fine-tuned by back-propagation (BP)
with the minimum cross-entropy criterion. The unsupervised
pre-training and supervised fine-tuning were performed using
mini-batches of 256 samples with a stochastic gradient descent
method. The training samples were shuffled prior to the
training. The learning rate for BP was initialized with 0.08
and halved if the error rate for the development set was not
improved at the end of each epoch. BP was iterated for up to
10 epochs. Other parameters of the DNN-HMM such as state
transition probabilities were copied from the baseline GMM-
HMM system. The raw acoustic feature at each analysis frame
is 40-dimensional log Mel-filterbank outputs with their first
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and second derivatives. The raw features were normalized to
have a global mean of 0.0 and a variance of 1.0. Temporal
contexts are incorporated by splicing 11 successive frames, so
that the DNN has 1320 (=40*3*11) input nodes.

As the training database, we used 967 academic oral pre-
sentations in the Corpus of Spontaneous Japanese (CSJ) [5],
which consists of 799 male and 168 female speakers.
The total amount of the training data is 257 hours. The
baseline GMM-HMM was trained using the same training
database. The acoustic feature for the GMM-HMM consists
of 12-dimensional MFCC, AMFCC, AAMFCC, Apower
and AApower. Cepstrum mean and variance normalization
(CMN/CVN) and vocal tract length normalization (VTLN)
were applied for each lecture (speaker). The GMM-HMM
were trained discriminatively using the minimum phone error
(MPE) criterion. The number of the tied states is 3015 and
each state has a Gaussian mixture of 16 components.

B. Baseline Performance in Lecture Transcription Tasks

We have set up two lecture transcription tasks in this work.
All lectures are distributed by Kyoto University OpenCourse-
Ware (OCW) website!. They were not given as a normal
course in our university, but arranged as symposia open to
public. We took two series of symposia which are most
popular in the OCW website. One is symposia on disaster
control, which attracts special attention in Japan after the large
earthquake and tsunami in 2011. We selected six lectures as
a test set, referred to as OCW-SHINSAI hereafter. The other
series of symposia is by the Center for iPS Cell Research and
Application (CiRA), whose director was awarded the Nobel
Prize in 2012. We selected six lectures as a test set, referred
to as OCW-CiRA. The baseline language model was trained
using the transcriptions of the CSJ, and adapted to each task
using related document texts such as newspapers and web
pages. For the ASR decoder, Julius rev.4.2 > was used with
some modifications for DNN-HMM.

Performance of the baseline DNN-HMM and GMM-HMM
systems is shown in Table I. Here, the results of unsupervised
speaker adaptation of the baseline GMM-HMM with MAP
and MLLR using the ASR results by the baseline system are
also given. The DNN-HMM exhibited much better accuracy
than the baseline GMM-HMM. With MLLR-based speaker
adaption, however, the performance of the GMM-HMM is
almost similar to that of the DNN-HMM. Here, MLLR works
better than MAP, because MAP is more sensitive to ASR errors
in the initial recognition hypothesis used in the unsupervised
adaptation scheme.

The primary goal of these tasks is to transcribe lectures
offline as accurately as possible, so a multi-pass recognition
strategy is allowed. Speaker adaptation is important since each
test data is long and given by a single speaker, and it has
actually shown to be effective for the GMM-HMM. Therefore,
we explore speaker adaptation methods for the DNN-HMM
system.

"http://ocw.kyoto-u.ac. jp
’http://julius.sourceforge.jp/

TABLE I
BASELINE SYSTEM PERFORMANCE (WORD ACCURACY)

| [ OCW-SHINSAI | OCW-CIRA |

[ DNN-HMM I 63.69 | 79.40 |
GMM-HMM 55.01 75.41
+MAP adaptation 57.73 76.31
+MLLR adaptation 62.84 78.46

III. RELATED WORK ON SPEAKER ADAPTATION OF
DNN-HMM

Speaker adaptation of DNN-HMM is not straightforward
because standard techniques of MLLR and MAP for GMM-
HMM is not applicable. A simple method is to design a
linear transformation to weights of links to input and/or output
nodes, which is analogous to fMLLR and global MLLR [6].
Some work introduced a special network layer for speaker
adaptive training [7]. Another naive method is to retrain DNN
with new data [8]. It is shown to work much better than the
linear transformation method for task adaptation [9]. Recently,
the retraining approach has also been applied to speaker
adaptation [10][11].

Since DNN has a huge number of free parameters, it will
easily fall into overfitting with a small amount of data. Yu et
al. [10] proposed a method to control the adaptation procedure
by monitoring the KL-divergence from the baseline model.
Liao et al. [11] introduced L2-regularization to effectively
control speaker adaptation. These studies showed that the over-
fitting problem is mitigated by some regularization methods,
but the problem becomes not so serious when the amount of
adaptation data gets large (longer than 10 minutes), which is
true in the lecture transcription tasks.

These studies also showed that the effect of unsupervised
adaptation is far below that of supervised adaptation. We can
reason that the retraining method is apparently not robust
for ASR errors in the initial recognition hypothesis used
for unsupervised adaptation, as in the MAP adaptation for
GMM-HMM. The problem may be mitigated by filtering
based on a confidence measure of the hypothesis, but will
not be solved completely because the confidence measure is
not perfect for filtering. Moreover, erroneous samples in the
initial recognition result would be very useful for improving
the speaker adaptation performance. More recently, Saon et al.
proposed to incorporate i-vector, which will be explained in
Section 4.1, to input features as a speaker-characterics [12].
Our scheme conducts direct speaker adaptation by retraining
DNN.

IV. SPEAKER ADAPTATION USING TRAINING DATA OF
SIMILAR SPEAKERS

In this paper, we present a speaker adaptation scheme that
selects training data similar to the test data for enhancing
DNN. In the lecture transcription tasks, this is equivalent to
selection of similar speakers to the speaker of the test data. The
adaptation data are selected from the training database with the
supervision labels, so the network retraining is guaranteed to
work appropriately.

This approach was explored in GMM-HMM [13][14], and
the key issue is the definition of the similarity measure of



speakers, which is accurate and computationally efficient.
Use of a likelihood ratio such as the KL-divergence would
be accurate, but it involves likelihood computation for long
speech data, which is impractical. In this paper, therefore,
we investigate rather simple features to represent speaker
characteristics, which are inspired by the progress in the
speaker recognition research. The similarity measure is defined
by the Euclidean distance or cosine distance between these fea-
tures representing speaker characteristics. The N-most similar
speakers are selected from the training database, and their data
are used for retraining DNN for speaker adaptation to the test
data.
Specifically, the following four features are investigated.

A. UBM-GMM-based Features

We adopt an approach of Universal Background Model
(UBM), which has been widely used for speaker recognition.
In this approach, a speaker-independent GMM called UBM
is trained using all speakers’ data of the training database.
For each speaker, a speaker-dependent GMM is built by
conducting MAP adaptation to the UBM using the speaker’s
utterances, and the mean vectors of the adapted GMM are
stacked to make up a GMM super-vector (GMM-SV) m for
speaker s.

Since the GMM super-vector is high-dimensional and ap-
parently redundant, compact and informative feature extraction
has been investigated, and recently i-vector and its variants
are proposed [15][16]. In this study, we conduct principal
component analysis (PCA) on the super-vector to reduce the
dimensionality. Here, (d-dimensional) super-vector mg for
speaker s is approximated by

ms ~ mo + Tws (D

where mg is the speaker-independent super-vector defined
from the UBM (UBM super-vector). The normalized super-
vectors (ms—my) of all S speakers are concatenated to make a
large (S x d-dimensional) matrix, on which PCA is conducted.
As a result, M principal components are extracted to make
up a (M xd-dimensional) matrix 7', which corresponds to the
total variability matrix in [16].
The GMM-PCA feature is defined by

ws = T (my —my) 2)

as the components in 7' are supposed to be orthonormal.
Unlike i-vector [16], we do not formulate an EM algo-
rithm [15] which estimates 7" and w, simultaneously, because
each speaker’s session in our tasks is long enough to build a
reliable speaker-dependent model with the MAP adaptation.
For our training database, a UBM with 256 mixture com-
ponents was trained using the 38-dimensional MFCC-based
features used for GMM-HMM. CMN/CVN and VTLN were
not applied to preserve speaker information. Then, the UBM
was adapted to each of the 967 speakers in the database.
The dimension of the resulting GMM super-vectors (GMM-
SV) is 9728 (=256%*38). As the result of PCA, 200 eigen-
vectors with the largest eigen-values were extracted. A 200-
dimensional feature (GMM-PCA) is also computed for each

TABLE I
COMPARISON OF SPEAKER SIMILARITY MEASURES (WORD ACCURACY)

| [ OCW-SHINSAI | OCW-CIRA |

[ unadapted DNN-HMM || 63.69 | 79.40 |
HMM-SV 64.73 80.10
HMM-xform 65.14 80.24
GMM-SV 64.95 80.41
GMM-PCA 65.31 80.44

TABLE III
RESULTS FOR TEST SET (WORD ACCURACY)

[ lecture ID [[ OCW-SHINSAI [ OCW-CIRA |
baseline 63.69 79.40
adapt with similar speakers 65.31 80.44
adapt with test data 67.23 80.87
combination of above two 67.98 81.17

speaker. Two similarity measures of speakers are defined by
the (negative) Euclidean distance for the 9728-dimensional
GMM-SV and the cosine distance for the 200-dimensional
GMM-PCA, respectively.
B. GMM-HMM-based Features

We also investigate features based on triphone GMM-HMM.
MLLR adaptation of the baseline GMM-HMM is conducted
for each speaker using the phone labels to obtain a speaker-
dependent GMM-HMM. In this process, an MLLR transfor-
mation matrix is estimated. We can use this MLLR matrix
(HMM-xform) as a speaker characteristic feature [17] . In
addition, the mean vectors of the adapted GMM-HMM (except
the silence model) are stacked to make up an HMM super-
vector (HMM-SV). It is very high-dimensional (1,827,649 in
our setting). Two more similarity measures of speakers are
defined by the (negative) Euclidean distance for MLLR-xform
and GMM-SV.

V. EXPERIMENTAL EVALUATIONS
Experimental evaluations were conducted using the baseline

DNN-HMM and the test sets described in Section 2. After
N-best speakers are selected from the training database, the
baseline DNN is retrained for additional 10 epochs of BP using
the speech data of these speakers. A relatively small learning
rate (= 0.001) was used for retraining to prevent overfitting.

A. Comparison of Speaker Similarity Measures
First, we compared the four features for the speaker similar-

ity measure. In this experiment, 5-best speakers were selected
from the training database. The results are listed in Table II.

All methods realized a significant improvement from the
baseline performance. Note that this improvement gives a
large margin over the adapted GMM-HMM system (Table I).
Among the two test sets, a larger improvement was obtained
for the test set of OCW-SHINSAI which had lower baseline
performance. Although the differences among the four meth-
ods are not large, the GMM-PCA feature yielded the best
performance consistently for both test sets. This is attributed
to compact and informative feature representation attained
through PCA.

B. Effect of Number of Selected Speakers

Next, we investigate the effect of the number of selected
speakers. There is a trade-off between similarity and the
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Fig. 1. Effect of number of selected speakers (word accuracy) (0 means
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amount of adaptation data; the more speakers are selected,
the less similar speakers would be incorporated. The result by
changing the number of speakers (/V) used for adaptation is
presented in Fig. 1. In this experiment, the GMM-PCA feature
was used for the speaker similarity measure.

From this result, we concluded that N=5 was best, although
there is not a significant drop before N=10. In this case (N=5),
the amount of the adaptation data for each test speaker was
about 80 minutes on average.

C. Combination with Adaptation using Test Data

We also tried the unsupervised adaptation method using
the initial ASR result of the test data. The baseline DNN
is retrained using the test data with the initial recognition
hypothesis as a supervision label, which is error prone. The
method can be combined with the proposed method. In this
case, the baseline DNN is retrained using the similar speakers’
data with correct labels and the test data with a error-prone
label.

The overall results are shown in Table III. The adapta-
tion method using the test data also realizes a significant
improvement in accuracy. It is generally observed that the
method performs better than the adaptation method using
similar speakers when the test data is longer because more
speaker-dependent data are incorporated, although there is not
a statistically significant difference between the two methods
for a majority of the lectures. The combination of the two
adaptation methods (last row in the two tables) achieved a
further improvement in both test sets. It shows a synergetic
effect of the two methods. It is noteworthy that the adaptation
methods are effective especially for the lectures whose base-
line performance is relatively low, and a drastic improvement
is obtained for two female speakers among the test sets. This
is because the training database is biased with male speakers,
and demonstrates the effect of the speaker adaptation.

VI. CONCLUSION
We have presented an unsupervised speaker adaptation

method for DNN-HMM systems for lecture transcription tasks,
in which speaker adaptation is important because of a large
amount of the adaptation data. In order to complement the
naive adaptation method using the initial ASR result of the test
data, we propose an adaptation scheme that selects training

data similar to the test data. We investigate several speaker
characteristic features used in speaker recognition to define
the speaker similarity measure. These features are efficiently
computed without likelihood computation on the speech data.
In the experimental evaluation, they all achieved a significant
improvement in accuracy from the baseline DNN-HMM, but
the GMM-PCA feature showed the best performance. The
method is combined with the adaptation method using the test
data, resulting to an additional improvement. The adaptation
method is particularly effective for the speakers whose base-
line performance is low.

The ASR transcripts have been edited and proofed by human
editors, and the final texts are now used as caption of these
lectures broadcast from the OCW website.
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