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Abstract—This paper presents a unified method for speech
segmentation, speaker normalization of spectral features, and
speaker adaptation of acoustic model for efficient meeting speech
recognition. In the proposed method, input speech is segmented
based on BIC (Bayesian Information Criterion), and compared
against each speaker’s statistic in the training corpus of the
acoustic model based on the BIC. Fast VTLN (Vocal Tract Length
Normalization) and MLLR (Maximum Likelihood Linear Re-
gression) adaptation are realized using a pre-estimated warping
factor and MLLR transformation matrices of the best-matched
speakers, respectively. Experimental evaluations in Parliamentary
speech transcription demonstrated that the proposed method
achieved comparable ASR accuracy to the standard ML esti-
mation for both VILN and MLLR adaptation, with significant
reduction of processing time.

I. INTRODUCTION

In recent years, much research effort has been focused on
the area of meeting speech transcription [1][2]. One of the
challenging issues of meeting speech is that it contains many
speakers and they appear by turns in an audio stream. For
accurate speech recognition for a variety of speakers, speaker
adaptation is essential for speaker-independent systems, and
in order to apply it to meeting speech, the decoding pro-
cess involves two extra stages, that is, segmentation of the
audio data into speaker homogeneous segments and online
estimation of adaptation parameters for each speaker turn.
For speaker segmentation, a method based on BIC (Bayesian
Information Criterion) is widely used because of its threshold-
free characteristics and robustness [3].

Speaker adaptation has two major directions: one is speaker
normalization of acoustic features, and the other is speaker
adaptation of acoustic model. It is well-known that applying
both feature normalization and model adaptation at the same
time is effective. One of the most popular techniques for
feature normalization is VTLN (Vocal Tract Length Nor-
malization) [4] and for model adaptation, MLLR (Maximum
Likelihood Linear Regression) [5] is widely used. Parameters
for normalization and adaptation are typically calculated in
an unsupervised manner, which involves further two separate
stages: label generation and ML (Maximum Likelihood) esti-
mation using the hypothesized label. In particular for speech
recognition of meetings, in which speaker changes occur
frequently, it is costly to estimate parameters for every speaker
turn. While identification of speaker characteristics is a shared
goal in these processes, the estimation procedures are usually
separately designed and conducted in VTLN and MLLR, and

also separated from the speaker segmentation process.

In this paper, we propose a unified method for speech
segmentation, speaker normalization and adaptation based
on the BIC for efficient meeting speech recognition. In the
proposed method, the BIC used in speaker segmentation
is used for identification of speaker characteristics, that is
looking up similar speakers in the training speech corpus.
Then, parameters for VTLN and MLLR of the corresponding
speakers, which can be pre-computed offline, are loaded. Thus,
we realize fast VITLN and MLLR adaptation, which do not
need the label generation and ML estimation processes.

In the remainder of the paper, following brief introduction
of the BIC in Section 2, the proposed method is described in
Section 3. Then, evaluations of the method on Parliamentary
speech transcription are presented in Section 4. Section 5
concludes the paper.

II. SPEAKER SEGMENTATION AND CLUSTERING BASED ON
BIC

A. Speaker segmentation

Bayesian Information Criterion (BIC) [6] is a criterion
for model selection. Given a data set {D;, Ds,..., Dy} and
candidate models M, M, ..., Mj;, the BIC value of the
model M; is defined as
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where d; is the number of free parameters in the model M;,
and P is the likelihood of M; for the data set. Then, M; having
the largest BIC value is selected to be the best model.

In BIC segmentation [3][7], given two consecutive segments
S1 (Ng, samples) and S2 (INg, samples), we consider two
models: one representing the two segments with a single
Gaussian Mg, +s, = N(us,+5,,25,+8,), and the other
representing the two with respective Gaussians Mg, 5, =
{Ms,, Ms,} = {N(us,,¥s,),N(us,,s,)}. Then, BIC
values for these two models are computed and compared. A
full-covariance Gaussian distribution is usually assumed for
each.

Specifically, BIC(Mg, 1s,) is derived as:
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where d is the dimension of the feature vector.
The model Mg, s, has twice as many parametes as
Ms, +s,, and its BIC becomes:

d Ns, + N
BIC(Ms,.,s,) = _5(N31+N52)10g27r—¥
N, N,
— tlog|Ss, | — =2 log|Ss,|

— Ad+ d(d + 1) log(Ns, + Ns)
3)

Then, the difference of these two, ABIC, is derived as:
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Here ) is often called a penalty weight, and it is fixed to be
2.0 in this work.

If ABIC takes a positive value for the two consecutive
segments, we can determine they should be modeled by
different Gaussians, concluding that there is a changing point
of some acoustic conditions (speaker change in meetings)
between them.

Each segment identified by this procedure is considered
to be acoustically homogeneous, therefore we can per-
form speaker normalization of acoustic features and speaker
adaptation of acoustic model based on this segment. This
scheme is widely used in broadcast news segmentation and
recognition[8].

B. Speaker clustering and classification

In addition to segmentation, we can also perform clustering
of speech segments based on the BIC. If ABIC for two
segments (in particular, the current segment and any previous
segment in the same meeting) takes a negative value, they are
likely to originate from the same speaker cluster. Based on this
clustering information, we can use shared parameters for the
segments of the same speaker cluster. As a result, the number
of online unsupervised parameter estimations can be reduced,
and its reliability would be enhanced’.

Furthermore, based on the BIC we can compare an input
speech segment against not only a previous segment in the
same meeting, but also a segment or a speaker cluster in

I The effect was confirmed in preliminary experiments, though not presented
in this paper.
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Fig. 1. Overview of the proposed method

the large speech corpus used for acoustic model training. In
this work, we regard each speaker as a cluster by merging
all his/her turn segments. For each speaker in the training
corpus, we can estimate offline the parameters for speaker
normalization and adaptation, using manual transcripts and an
accurate context-dependent acoustic model, prior to the actual
recognition. Thus, we do not need any online unsupervised
estimation process (label generation and ML estimation), and
fast normalization and adaptation can be realized using the
pre-computed parameters.

There have been a number of previous works, which ei-
ther search for the same speaker online (e.g. [9]) or search
for similar speakers in the training corpus (e.g. [10]) to
adapt/retrain the acoustic model. Our proposed method uses
the same BIC used in speaker segmentation for searching for
similar speakers, whose parameters are then used for speaker
normalization and adaptation. Figure 1 illustrates the overview
of the proposed method.

III. FAST SPEAKER NORMALIZATION AND ADAPTATION
A. Fast VTLN

We use VTLN [4] as a speaker normalization technique.
VTLN is to normalize the spectral variation caused by different
lengths of the vocal tract, and can be simply implemented
by warping the frequency axis in the filterbank analysis. The
warping is performed by a piece-wise linear function which
is controlled by a scalar value: a warping factor a. The
value of o for each input speech segment is estimated in
an unsupervised manner during speech recognition. A typical
procedure involves two stages; recognizing the segment with
o = 1.0 (no warping) and then performing forced alignment
of the hypothesis for all possible warping factors (usually
0.8 < a < 1.2), to find the most likely value.

There are several techniques for more efficient implemen-
tation which do not require the initial transcription (ASR).
One of the most popular techniques for fast VILN is to use
GMM for the warping factor selection [11]. In this method,
GMM for each value of « is trained using speech data that
will be processed with the same « value, and the model (cor-
responding value of «) that gives the highest likelihood to the
unnormalized feature of the input speech is selected. Another



method is proposed by Emori et al. [12], which estimates «
analytically and approximately based on the likelihood given
by one specific acoustic model, without any search procedure
for o, on the assumption that the formant position of an
unknown speaker is not so far different from known speakers.

Our proposed method does not need any form of likelihood
computation which is usually costly, but only looks up a same
or very similar speaker in the database, and use the value
of a of the speaker. The similarity is measured via ABIC
which is used in speaker segmentation, and thus computed
very efficiently.

B. Fast MLLR adaptation

We use MLLR [5], that is one of the most widely-used
techniques for acoustic model adaptation. MLLR estimates a
set of linear transformations for Gaussian means of HMM
by ML criterion, instead of estimating the HMM parameters
directly. These transformations shift the component means of
the baseline model so that each state in the HMM is more
likely to generate the adaptation data. MLLR works robustly
with a smaller amount of adaptation data than direct adaptation
such as MAP, because of the smaller number of the parameters.
Unsupervised adaptation is performed in a similar manner as
in VTLN; recognizing the adaptation data with the unadapted
baseline model and then estimating the linear transformations
with the hypothesized phone sequence.

Our proposed method does not conduct the initial transcrip-
tion, but looks up a set of similar speakers in the database
and use their transformation matrices. Unlike VTLN, which
needs a single parameter, MLLR transformation involves a
set of matrices with a number of parameters. Using a single
speaker’s information may not be reliable, unless he/she is the
exactly same speaker. Thus, we use multiple (N-best) speakers’
information to estimate the parameters for the input speech.
In this work, we simply compute an average over the selected
speakers. More sophisticated combinations such as a weighted
mean should be explored in the future.

C. Fast comparison between input segment and training data
via BIC

The search for similar speakers via ABIC can be done in
a very efficient manner. In formula (4), assuming S; to be a
current input speech segment and S to be a speaker cluster
in the training speech corpus, the second term log(|Xg, |) has
already been calculated during the segmentation process, and
the third term log(|Xs,|) were calculated and stored offline
before the actual recognition. For calculating the first term,
we need the covariance matrix of all samples in S; and S,
but it can be calculated easily using the sufficient statistics of
the two segments (the first order statistics, the second order
statistics, and the number of frames), without access to each
speech sample. These statistics should have been computed
either offline or during the segmentation process.

IV. EXPERIMENTAL EVALUATIONS

Evaluation experiments were performed on speech tran-
scription of the Japanese Parliament (Diet). We collected three
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Fig. 2. Correlation of o estimated by the standard method and the proposed
method

committee meetings (Financial 7 hours, Judicial 2.5 hours,
Education 2.5 hours, 12 hours in total) held in February
2010 for the test set. The total number of speakers was 54.
Experiments were performed using both manual and automatic
segmentation (automatic segmentation is based on ABIC, as
described in Section 2). The total number of segments was 974
by manual segmentation, and 786 by automatic segmentation.
For automatic segmentation and database look-up via ABIC,
24-dimensional unnormalized cepstrul features consisting of
12 MFCCs plus their A were used. On the other hand, 38-
dimensional features consisting of 12 MFCCs, thier A, AA,
and Apower plus AApower were used for speech recognition.

The acoustic model is triphone HMMs with 3000 states and
16 Gaussian components per state, trained by MPE criterion
using meeting speech data (years 2001-2007). The amount of
training data was 225 hours. Turn-based CMN (cepstrum mean
normalization), CVN (cepstrum variance normalization) and
VTLN were applied to the features.

The language model was built by applying statistical
speaking-style transformation to ten-year (1999-2009) data of
official meeting records. The text size was 170M words. The
vocabulary size is 64K. Julius-4.1.2 was used for decoding.

The database for the proposed method was constructed
using speaker turns in the training corpus that were longer
than 30 seconds (9645 turns, 1189 speakers). The time interval
between the training data and the test set is more than three
years and 60% of the speakers in the test set were not present
in the training corpus.

We preliminarily evaluated speaker recognition performance
for 198 turns whose speakers have more than 10 minutes data
in the training corpus. Speaker recognition was performed by
choosing speakers in the training corpus who have the smallest
ABIC values. The 1-best accuracy was only 33.9%, but the 5-
best accuracy was 80.8%, and the 20-best accuracy was 89.7%.
The accuracy with this simple method is not so high, but we
expect similar speakers having a similar « value are selected.

The values of « estimated by the standard ML method and
the proposed method for 287 turns of new speakers are plotted
in Figure 2. Their correlation is 0.934, and the average error
(difference of the two) is 0.017, showing that our method can
estimate accurate warping factors without any transcription,
even if the speakers are not present in the training corpus.



A. Evaluation of fast VILN

We first evaluated the proposed fast VILN. The stan-
dard method using the unsupervised (blind) ML estimation
and the GMM-based selection method were also tested for
comparison. A monophone acoustic model with 16 Gaussian
components per state was used for label generation and
forced alignment in the standard method. For the GMM-
based estimation, we trained 41 GMMs for each value of «
in the range 0.8 < o < 1.2 (step size of 0.01) using the
corresponding speech data in the training corpus. The number
of Gaussian components in each GMM is 16. The proposed
method is much faster than the GMM-based method which
needs to calculate the likelihood of the input speech frames.
The proposed method took only 165 seconds of CPU time
(CPU: Intel Xeon 3.0GHz) in estimating « for 12 hours of
the test data, and was nearly 10 times faster than the GMM-
based method which spent 1609 seconds.

The character accuracy of ASR resluts is summarized in
Table I. In the case of manual segmentation, VTLN using the
standard ML estimation gives improvement of 2.0% absolute
compared to the result without VTLN. While the GMM-based
method shows degradation of absolute 0.6% from the standard
method, the proposed method achieves comparable ASR ac-
curacy to the standard method. Much the same tendency is
observed in the case of automatic segmentation.

B. Evaluation of fast MLLR adaptation

Then, we evaluated the proposed method for fast MLLR
adaptation. The results are shown in Table II. For the proposed
method, we show the results for two different numbers of N-
best speakers used for adaptation, N =1 and N = 20.

In the both cases of manual and automatic segmentation,
MLLR using the proposed method shows further improve-
ments (absolute 0.43-0.46%) over the result with the proposed
VTLN when N = 20, which are statistically significant at the
1% level. The degradations (0.25-0.28%) from the standard
MLLR are not statistically significant at the same level. On
the other hand, the accuracy is degraded when the model is
adapted with only 1-best speaker’s transformation. The result
coincides the fact that speaker recognition performance was
low in the 1-best and needed the 20-best for a reliable level.

The standard method spent 19 hours of CPU time for the la-
bel generation and 1.3 hours for the ML parameter estimation
for the entire test data, while the proposed method needed little
additional time over the VTLN parameter estimation. Thus, the
effect of speeding up is much more significant than the case
of VTLN.

V. CONCLUSION

We have proposed an efficient method for speech seg-
mentation, speaker normalization of the spectral features,
and speaker adaptation of the acoustic model. The method
consistently uses the BIC used in speech segmentation, for
looking up similar speakers in the training corpus, whose
parameters are then used for feature normalization and model

TABLE I
EFFECT OF FAST VTLN (CHARACTER ACCURACY %)

[ method [ manual segment [ automatic segment |
(without VTLN) 83.80 83.58
ML (blind search) 85.79 85.66
GMM-based selection 85.22 85.06
proposed method 85.63 85.54
TABLE II

EFFECT OF FAST MLLR (CHARACTER ACCURACY %)

[ method [ manual segment [ automatic segment |

[ proposed VTLN [ 85.63 [ 85.54 ]
proposed MLLR (N = 1) 85.22 85.08
proposed MLLR (N = 20) 86.06 86.00

[ standard MLLR [ 86.34 [ 86.25 ]

adaptation. The proposed method achieved significant reduc-
tion of processing time without degradation of accuracy for
meetings consisting of many speakers who are not covered in
the training corpus.

This method is particularly useful for real-time captioning
using speech recognision. As the proposed method is based on
a very simple principle, it can be applied to other adaptation
techniques such as Constrained MLLR and variance MLLR.
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