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ABSTRACT
This paper presents a feedback framework that can improve chord
recognition for music audio signals by performing approximate
note transcription with Bayesian non-negative matrix factorization
(NMF) using prior knowledge on chords. Although the names
and note compositions of chords are intrinsically linked with each
other (e.g., C major chords are highly likely to include C, E, and G
notes, and those notes are highly likely to be in C major chords),
chord recognition and note transcription (multipitch analysis) have
been studied independently. To solve this chicken-and-egg prob-
lem, our framework iterates chord recognition and approximate note
transcription using each other’s results. More specifically, we first
perform approximate note transcription based on Bayesian NMF that
forces basis spectra to respectively correspond to different semitone-
level pitches covering the whole range. We then execute chord
recognition based on Bayesian hidden Markov models (HMMs) that
use chroma features obtained from the activation patterns of those
pitches. To improve note transcription, we again perform Bayesian
NMF that encourages certain kinds of pitches in each chord region
to be activated. Experimental results showed that our feedback
framework gradually improved the accuracy of chord recognition.

Index Terms— Chord recognition, note transcription, Bayesian
inference, nonnegative matrix factorization (NMF), hidden Markov
model (HMM).

1. INTRODUCTION

Automatic chord recognition for music audio signals is one of the
most fundamental tasks in the field of music information process-
ing [1, 2], in part because the chord patterns used in musical pieces
are clues useful in composer identification [3] and genre classifica-
tion [4]. And because chord patterns are closely related to the mu-
sical mood, automatic chord recognition is indispensable for finding
users’ favorite pieces in large music collections [5].

Conventional methods of chord recognition generally consist of
two parts: extraction of acoustic feature vectors and classification of
those vectors. The most popular way of feature extraction is to calcu-
late a 12-dimensional chroma vector at each frame or short segment
(e.g., half beat) [6]. The chroma vector represents an energy distribu-
tion over the twelve traditional pitch classes C, C#, D, D#, ..., B. The
chroma vectors extracted from a region of a C major chord, for ex-
ample, tend to take large values in the dimensions corresponding to
pitch classes C, E, and G. A standard way of feature classification is
to use a hidden Markov model (HMM) that represents the transition
probabilities between adjacent chords and the emission probabilities
of chroma vectors for each kind of chords [7–9].
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Fig. 1. Overview of our feedback framework combining chord
recognition with approximate note transcription.

The main limitation of most conventional methods of chord
recognition is that they extract shallow chroma vectors from music
audio signals without performing any note transcription or multi-
pitch analysis. Since the names and note compositions of chords
are intrinsically linked with each other (e.g., a C major chord is
highly likely to include musical notes with pitch classes C, E, and
G, and vice versa), a few studies have focused on the connection
between chord recognition and note transcription. Sumi et al. [10]
improved chord recognition by using a multipitch analysis method
called PreFEst [11] to estimate the pitch trajectory of a bass line
and using that trajectory as a clue when estimating the root notes
of chords. Mauch and Dixon [12] calculated reliable chroma vec-
tors insensitive to the energy of overtones by using approximate
note transcription based on nonnegative least squares (NNLS), and
Raczyǹski et al. [13] improved note transcription by considering
a sequence of chords as prior knowledge about pitch distributions.
Note that those studies have dealt with only one-way dependency
between chord recognition and note transcription.

In this paper we propose a feedback framework that can im-
prove chord recognition by focusing on the mutual dependency of
chord recognition and note transcription (Fig. 1). More specifically,
a target music audio signal is first transcribed into a piano-roll repre-
sentation via Bayesian nonnegative matrix factorization (NMF) that
forces basis spectra to have harmonic structures corresponding to
different semitone-level pitches. Overtone-insensitive chroma vec-
tors are obtained from the piano roll as in [12], and then a chord
sequence is estimated by using Bayesian HMMs. A key feature of
our framework is to again perform Bayesian NMF that encourages
particular kinds of pitches (e.g., C, E, and G) to be activated in each
chord region (e.g., C major). This feedback enables us to calculate
more reliable chroma vectors from the refined piano roll.
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2. RELATED WORK

This section introduces related work on chord recognition in terms
of feature extraction and classification.

2.1. Feature extraction
The basic method of calculating the chroma vector is to accumulate
the energy of frequency bins corresponding to each pitch class [6].
Since this method cannot distinguish the energy of fundamen-
tal frequencies (F0s) from that of harmonic partials, the obtained
chroma vector does not precisely represent the energy distribution
over the twelve pitch classes. Several methods for reducing the
power of overtones before calculating chroma vectors have been
proposed. Lee [14], for example, proposed a harmonic product
spectrum (HPS), whereas Mauch and Dixon [12] used approxi-
mate note transcription based on nonnegative least squares (NNLS).
Saito et al. [15] used specmurt analysis for roughly extracting the
power of F0s by assuming a common harmonic structure, and
Ueda et al. [16] reduced the power of percussive components by
using a harmonic/percussive sound separation (HPSS) method.

Several variants of chroma vectors have been proposed. Müller
and Ewert [17] proposed a CRP chromagram that is insensitive to
the pitches and timbres of music audio signals. Ni et al. [18] pro-
posed a loudness-based chromagram that takes into account the fact
that perception of loudness is not linearly proportional to the power
or amplitude spectrum, and Harte et al. [19] proposed a method of
tonal centroid transformation that converts a 12-dimensional chroma
vector into a 6-dimensional tonal-centroid vector.

2.2. Feature classification
HMMs can be used to model a vocabulary of chords as latent states;
decoding such an HMM then corresponds to transcribing the optimal
chord sequence. An important extension of this approach is to esti-
mate chords and keys at the same time. Lee and Slaney [20] trained
24 key-specific HMMs corresponding to the 24 major/minor keys
and selected the best model with high probability for a given audio
signal. To deal with key changes, some studies tried to take into
account the transition between adjacent keys [12,21,22]. Deep neu-
ral networks (DNNs) and recurrent neural networks (RNNs), which
have significantly improved the accuracy of speech recognition, have
recently been used for chord recognition [23,24]. This approach can
unify feature extraction and classification into the same network.

3. PROPOSED METHOD

This section describes the proposed method of chord recognition
based on approximate note transcription. Our method consists
of Bayesian NMF-based feature extraction (inspired by [12]) and
Bayesian HMM-based feature classification (inspired by [20]).

3.1. Problem specification
The goal of chord recognition is to transcribe a target music signal
into a sequence of chord labels. Let X̂ = {x̂1, x̂2, · · · , x̂T } be a
sequence of chroma vectors extracted from the target signal and Ẑ =
{ẑ1, ẑ2, · · · , ẑT } be a sequence of the corresponding chord labels,
where T is the length of those sequences. The chord boundaries are
determined by detecting chord change positions from Ẑ. We aim to
convert X̂ to Ẑ by using some kind of classifiers.

To train a statistical classifier, we use a chord-label-annotated
music signal. Let X = {x1,x2, · · · ,xT } be a sequence of chroma
vectors extracted from the music signal and Z = {z1, z2, · · · , zT }

Original spectrogram

Chromagram obtained by MIR toolbox
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Activation patterns obtained by NMF

Activation patterns obtained by NMF with chord priors

Chromagram calculated from the above

Fig. 2. Comparison of three variants of chromagrams: The bot-
tom chromagram shows the clearest distributions over the 12 pitch
classes.

be a sequence of the corresponding chord labels. Both X and Z are
given as the training data. For simplicity, we assume that the training
data consists of only one musical piece having the same length as
the sequence X̂ (the extension to dealing with multiple pieces is
straightforward).

The chord label is represented as a combination of a root note
(C, C#, · · · , B) and a type (“maj” or “min”). In addition, the special
symbol N is used for representing “no chord.” Let K be the size of
the chord vocabulary (K=25). Since the main focus of this paper is
to show the effectiveness of mutually combining chord recognition
with note transcription, we tackle the essential part of chord recog-
nition by posing the following assumptions:

• Correct beat positions are given in advance. This assumption
is not critical because many promising methods of beat track-
ing have recently been proposed [25, 26].

• Chord boundaries are on beat positions (quarter-note level) or
half-beat positions (eight-note level). This assumption holds
true for the vast majority of popular music.

• Only two types of chords, “maj” and “min” chords, are taken
into account. Other types of chords (e.g., “maj7” and “dim”)
are forcibly categorized into those two types as in [27].

• The key of a musical piece remains the same from the begin-
ning to the end (i. e., key changes are not taken into account).

To perform reliable chord recognition, the tuning of each musi-
cal piece should be adjusted in advance as in [28].

3.2. Chord recognition based on Bayesian HMM
We explain our method of chord recognition that represents the gen-
erative process of chroma vectors by using Bayesian HMMs.

3.2.1. Feature extraction

We propose a method that extracts robust chroma features from tem-
poral activation patterns of musical notes in a way similar to that
in [12]. A key difference is that our method uses Bayesian NMF
instead of NNLS because it enables us to take prior knowledge on
harmonic structures and chord labels into account in a principled
manner (see Section 3.3).

At each frame t, we calculate a 12-dimensional chroma vec-
tor xt from the activation patterns of different pitches obtained
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by Bayesian NMF (Fig. 2). In this paper the “frame” indicates a
short half-beat segment. More specifically, we focus on 60 different
pitches from C2 to B6 (MIDI note numbers from 36 to 95) in five
octaves. To calculate the value of each dimension of xt, we accu-
mulate the amplitude values of five pitches (e.g., C2, C3, C4, C5,
and C6) corresponding to the same pitch class (e.g., C) at frame t.
Finally, each dimension of chroma vectors is standardized over all
frames such that the mean and variance of the dimension are equal
to 0 and 1.

3.2.2. Model formulation

We propose a method that classifies chroma vectors by using 24 key-
specific HMMs that respectively correspond to 24 major/minor keys
in a way similar to that in [20]. A key difference is to formulate
Bayesian HMMs for avoiding overfitting to the training data. Each
HMM encodes the generative process of the observed data X via the
latent variables Z under a condition that a particular key is assumed.
For a set of model parameters, Θ (= {ϕ,π,µ,Λ} explained later),
the joint probability over X and Z is given by

p(X,Z|Θ) = p(X|Z,Θ)p(Z|Θ) =

T∏
t=1

p(xt|zt)p(zt|zt−1), (1)

where p(zt|zt−1) is the transition probability indicating how likely
the previous chord zt−1 is to make a transition to the current chord
zn and p(xt|zt) is the emission probability indicating how likely the
chroma vector xt is to be generated from the chord zn. p(z1|z0) =
p(z1) is the initial state probability. More specifically, p(zt|zt−1) is
represented as a discrete distribution as follows:

p(zt = k′|zt−1 = k,ϕk) = ϕkk′ , (2)

where ϕk = [ϕk1, · · · , ϕkK ]T is a set of transition probabilities that
sum to unity (1 ≤ k ≤ K). Note that the transition probabilities ϕ
heavily depend on the key. p(xt|zt), on the other hand, is repre-
sented as a Gaussian mixture model (GMM) as follows:

p(xt|zt = k,πk,µkl,Λkl) =

L∑
l=1

πklN (xt|µkl,Λ
−1
kl ), (3)

where L is the number of Gaussians, πk = [πk1, · · · , πkL]
T is a

set of mixing weights, and µkl and Λkl are respectively the mean
vector and precision matrix of the l-th component Gaussian. This
GMM represents a probability distribution over chroma vectors of
chord k (1 ≤ k ≤ K). To complete the Bayesian formulation, we
put conjugate priors on unknown parameters Θ as follows:

p(ϕk) = D(ϕk|α0), p(πk) = D(πk|γ0), (4)
p(µkl,Λkl) = N (µkl|u0, (β0Λk)

−1)W(Λkl|W0, ν0), (5)

where D and W indicate the Dirichlet and Wishart distributions
and ∗0’s are hyperparameters given in advance; α0 and γ0 are
K-dimensional nonnegative vectors, u0 is a 12-dimensional vec-
tor, β0 is a nonnegative scalar, W0 is a 12 × 12 scale matrix,
and ν0 is a degree of freedom. Using Eqs. (1)–(5), we obtain the
complete probability over all random variables: p(X,Z,Θ) =
p(X|Z,π,µ,Λ)p(Z|ϕ)p(ϕ)p(π)p(µ,Λ).

3.2.3. Training

Given the training data X and Z, we aim to calculate a posterior dis-
tribution over the model parameters, p(ϕ,π,µ,Λ|X,Z), accord-
ing to the Bayes rule. In this setting, the posterior can be factorized
as p(ϕ,π,µ,Λ|X,Z)=p(π,µ,Λ|X,Z)p(ϕ|Z). Using the con-
jugacy between Eq. (2) and Eq. (4), we obtain p(ϕ|Z) in the same

form as the prior distribution:

p(ϕk|Z) = D(ϕk|α0 + nk), (6)

where nk is a K-dimensional vector in which each element nkk′ is
the number of transitions from chord k to chord k′ in Z.

Since the true posterior p(π,µ,Λ|X,Z) cannot be computed
analytically, we use a variational Bayesian (VB) method [29] that
approximates it as a factorized distribution as follows:

p(π,µ,Λ|X,Z) ≈ q(π)q(µ,Λ), (7)

where two factors q(π) and q(µ,Λ) are iteratively optimized such
that the Kullback-Leibler divergence between p(π,µ,Λ|X,Z) and
q(π)q(µ,Λ) is minimized. As a result, q(π) and q(µ,Λ) are found
to have the same forms as the corresponding priors:

q(πk) =D(πk|γ0 +mk), (8)
q(µkl,Λkl) =N (µkl|ukl, (βklΛkl)

−1)W(Λkl|Wkl, νkl). (9)

To optimize these parameters, we alternate VB-E and VB-M steps as
in the expectation-maximization (EM) algorithm. Because of space
limitation, we omit the updating formula (see Ch. 10 in [29]).

We utilize the circular characteristics of the twelve pitch classes
to make the maximum use of X and Z for model training [16, 30].

• Training p(ϕ|Z): The key underlying each chord zt is trans-
posed to C by shifting the root note of zt. We thus have to
train chord transitions for only two keys (C major and C mi-
nor). The other 22 key-specific HMMs can be obtained by
permuting the elements of ϕ.

• Training p(π,µ,Λ|X,Z): The root note of each chord zt is
shifted to C by circular-shifting of the elements of the chroma
vector xt. We thus have to independently train GMMs for
only two different “types” of chords (C “maj” and C “min”).
The other 22 GMMs can be obtained by shifting the elements
of the Gaussian parameters. Note that the 24 GMMs are
shared over all the 24 key-specific HMMs.

3.2.4. Prediction
Using a trained HMM, we aim to obtain the optimal Ẑ maximizing
a joint predictive probability given by

p(X̂, Ẑ|X,Z) =

∫
p(X̂, Ẑ|Θ)p(Θ|X,Z)dΘ. (10)

An approximate solution could be obtained without integral compu-
tation by simply getting the optimal Θ̂ that maximizes p(Θ|X,Z)

and then finding the optimal Ẑ that maximizes p(X̂, Ẑ|Θ̂) by using
the Viterbi algorithm [31]. Instead, since p(X̂, Ẑ|X,Z) is more ro-
bust to outliers, we approximate it as a predictive HMM that consists
of predictive transition and emission distributions (see Eqs. (2) and
(3) for comparison) obtained by marginalizing out Θ as follows:

p(ẑt = k′|ẑt−1 = k,Z) = E[ϕkk′ ], (11)

p(x̂t|ẑt = k,X,Z) =

L∑
l=1

E[πkl]St(x̂t|ukl,Vkl, νkl − 11), (12)

where St indicates the Student-t distribution and Vkl is given by

Vkl =
(νkl − 11)βkl

1 + βkl
Wkl. (13)

To obtain the optimal Ẑ, we can use the Viterbi algorithm. This
decoding procedure is performed in parallel with respect to the 24
key-specific HMMs, and the HMM with the highest p(X̂, Ẑ|X,Z)

is selected for estimating the key of Ẑ.
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3.3. Approximate note transcription based on Bayesian NMF
Here we explain Bayesian NMF for note transcription and how to in-
corporate prior knowledge on harmonic structures and chord labels.

3.3.1. Model formulation and Bayesian inference
NMF has been the most popular choice for source separation and
multipitch analysis of music audio signals [32, 33]. It approximates
a nonnegative matrix (constant-Q spectrogram) X ∈RM×N as the
product of two nonnegative matrices W ∈RM×R and H ∈ RR×N

such that X≈WH , where W =[w1, · · · ,wR] is a set of R basis
spectra over M frequency bins and H = [h1, · · · ,hR]

T is a set of
the corresponding activation patterns over N frames. To evaluate the
approximation error, we use the Kullback-Leibler (KL) divergence
in an element-wise manner. Minimizing the KL divergence is equiv-
alent to maximizing the Poisson likelihood given by

p
(
Xmn

∣∣∣{wrm, hrn}Rr=1

)
= P

(
Xmn

∣∣∣∣∣
R∑

r=1

wrmhrn

)
. (14)

To formulate a Bayesian model of NMF, we put independent gamma
priors on individual elements of W and H as follows:

p(wrm) = G(wrm|aw
rm, bwrm), (15)

p(hrn) = G(hrn|ah
rn, b

h
rn), (16)

where a∗ and b∗ are the shape and rate hyperparameters.
Since the true posterior p(W ,H|X) cannot be computed ana-

lytically, we also use a VB method that approximates it as a factor-
ized distribution as follows:

p(W ,H|X) ≈ q(W )q(H). (17)

As a result, optimal q(W ) and q(H) are found to have the same
forms of the prior distributions:

q(wrm) = G(wrm|aw
rm+

∑
nλmnkXmn, b

w
rm+

∑
n E[hrn]),

q(hrn) = G(hrn|ah
rn+

∑
mλmnkXmn, b

h
rn+

∑
m E[wrm]),

where λmnk ∝ exp(E[logwrm] + E[log hrn]) is an auxiliary vari-
able such that

∑
k λmnk = 1.

3.3.2. Hyperparameter adjustment
We adjust p(W ) such that basis spectra have harmonic structures
corresponding to prefixed semitone-level pitches. We assume that
the power of overtones decays exponentially with a decaying ratio of
0.5 in a typical harmonic structure. A hyperparameter vector aw

k =
[aw

k1, · · · , aw
kM ]T over frequency bins is set to be proportional to

the typical harmonic structure. Note that the larger the vector aw
k is

scaled, the stronger the impact of the prior is.
Similarly, we can adjust p(H) such that particular kinds of pitch

classes are encouraged to be activated in the region of each chord.
As shown in Fig. 3, we learn how likely each pitch class is to be
used in a C maj or C min chord by using music scores (MIDI files)
with chord annotations in which the musical notes of each chord
region are transposed such that the root note of the chord is C. A
hyperparameter ah

rn is set to be proportional to the probability of the
corresponding pitch class.

Table 1. Experimental results.
Feature Chroma NMF NMF with priors

Recognition rate (%) 69.0 71.6 71.9

4. EVALUATION

Here we describe our experiments evaluating the effectiveness of our
framework.

4.1. Experimental conditions
We used the Beatles dataset [34], out of which 137 songs having
major scales were used for 5-fold cross validation. We thus trained
12 key-specific HMMs corresponding to the 12 major keys in our
experiments. The music audio signals were converted into constant-
Q spectrograms with a frequency interval of 33.3 cents and a time
interval of 64 ms. The hyperparameters were given by L = 32,
α0 = 1, γ0 = 1, u0 = 0, β0 = ν0 = 12, W0 = I , R = 88,
and aw

rm = bwrm = ah
rn = bhrn = 1 if no prior knowledge was used.

To evaluate the performance of chord recognition, we calculated the
duration-based matching rate between the estimation results and the
ground truth. For comparison, we tested a baseline method based on
Bayesian HMMs trained by using chroma vectors [35] extracted via
the MIR toolbox without any note transcription.

4.2. Experimental results
As shown in Table 1, the experimental results indicated the effec-
tiveness of mutually combining chord recognition with approximate
note transcription. We found that harmonic overtones were reduced
by NMF, and the obtained chromagrams showed clearer pitch-class
distributions than normal ones. Although the recognition rate was
further improved by using prior knowledge about chords, the im-
provement was not as much as we had expected. Since relatively
simple chords (e.g., triad), which often appear in Beatles dataset,
originally showed sparse chromagrams, the effectiveness of NMF
was limited even if chord priors were used. The proposed method is
expected to work more effectively for musical pieces with complex
chords (e.g., seventh and ninth).

If chord recognition and approximate note transcription are it-
erated in a mutually-dependent manner, the recognition rate is ex-
pected to be further improved. The computational time, however, is
also increased in proportion to the number of iterations. To solve this
problem, it is necessary to formulate a unified probabilistic model of
chord recognition and note transcription.

5. CONCLUSION

This paper presented a feedback framework that combines chord
recognition based on Bayesian HMMs with approximate note tran-
scription based on Bayesian NMF. Those models can make use of
each other’s information. Experimental results showed the effective-
ness of our framework, but there would be much room for signifi-
cantly improving the chord recognition rate. To maximize the po-
tential of the framework, we will try to appropriately adjust or auto-
matically learn the hyperparameters of Bayesian NMF. On the other
hand, the improvement of note transcription could be expected in our
framework. We therefore plan to evaluate not only chord recognition
but also note transcription. To guarantee the convergence theoreti-
cally, we aim to formulate a unified probabilistic model of chord
recognition and note transcription that can be jointly optimized in a
principled manner.
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