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ABSTRACT

This paper presents a new probabilistic model that can align
multiple performances of a particular piece of music. Con-
ventionally, dynamic time warping (DTW) and left-to-right
hidden Markov models (HMMs) have often been used for
audio-to-audio alignment based on a shallow acoustic sim-
ilarity between performances. Those methods, however,
cannot distinguish latent musical structures common to all
performances and temporal dynamics unique to each per-
formance. To solve this problem, our model explicitly rep-
resents two state sequences: a top-level sequence that de-
termines the common structure inherent in the music it-
self and a bottom-level sequence that determines the actual
temporal fluctuation of each performance. These two se-
quences are fused into a hierarchical Bayesian HMM and
can be learned at the same time from the given perfor-
mances. Since the top-level sequence assigns the same
state for note combinations that repeatedly appear within
a piece of music, we can unveil the latent structure of the
piece. Moreover, we can easily compare different perfor-
mances of the same piece by analyzing the bottom-level se-
quences. Experimental evaluation showed that our method
outperformed the conventional methods.

1. INTRODUCTION

Multiple audio alignment is one of the most important tasks
in the field of music information retrieval (MIR). A piece
of music played by different people produces different ex-
pressive performances, each embedding the unique inter-
pretation of the player. To help a listener better understand
the variety of interpretation or discover a performance that
matches his/her taste, it is effective to clarify how multiple
performances differ by using visualization or playback in-
terfaces [1–3]. Given multiple musical audio signals that
play a same piece of music from the beginning to the end,
our goal is to find a temporal mapping among different sig-
nals while considering the underlying music score.

This paper presents a statistical method of offline mul-
tiple audio alignment based on a probabilistic generative
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Figure 1. An overview of generative audio alignment.

model that can integrate various sources of uncertainties in
music, such as spectral shapes, temporal fluctuations and
structural deviations. Our model expresses how a musical
composition gets performed, so it must model how they
are generated.1 Such a requirement leads to a conceptual
model illustrated in Figure 1, described using a combina-
tion of two complementary models.

To represent the generative process of a musical com-
position, we focus on the general fact that small fragments
consisting of multiple musical notes form the basic build-
ing blocks of music and are organized into a larger work.
For example, the sonata form is based on developing two
contrasting fragments known as the “subject groups,” and a
song form essentially repeats the same melody. Our model
is suitable for modeling the observation that basic melodic
patterns are reused to form the sonata or the song.

To represent the generative process of each performance,
we focus on temporal fluctuations from a common music
composition. Since each performance plays the same mu-
sical composition, the small fragments should appear in
the same order. On the other hand, each performance can
be played by a different set of musical instruments with a
unique tempo trajectory.

Since both generative processes are mutually dependent,
we integrate a generative model of music composition with
that of performance in a hierarchical Bayesian manner. In
other words, we separate the characteristics of a given mu-
sic audio signal into those originating from the underly-
ing music score and those from the unique performance.
Inspired by a typical preprocessing step in music struc-
ture segmentation [6,7], we represent a music composition
as a sequence generated from a compact, ergodic Markov
model (“latent composition”). Each music performance is
represented as a left-to-right Markov chain that traverses
the latent composition with the state durations unique to
each performance.2

1 A generative audio alignment model depends heavily on the model of
both how the music is composed and how the composition is performed.
This is unlike generative audio-to-score alignment [4, 5], which does not
need a music composition model because a music score is already given.

2 Audio samples are available on the website of the first author.
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Figure 2. The concept of our method. Music composition is modeled as a sequence (composition sequence) from an
ergodic Markov model, and each performance plays the composition sequence, traversing the composition sequence in the
order it appears, but staying in each state with different duration.

2. RELATED WORK

Audio alignment is typically formulated as a problem of
maximizing the similarity or minimizing the cost between
a performance and another performance whose time-axis
has been “stretched” by a time-dependent factor, using dy-
namic time warping (DTW) and its variants [8, 9] or other
model of temporal dynamics [10]. To permit the use of a
simple similarity measure, it is important to design robust
acoustic features [11, 12].

Alternatively, tackling alignment by a probabilistic gen-
erative model has gathered attention, especially in the con-
text of audio-to-music score alignment [4, 5]. In general,
a probabilistic model is formulated to describe how each
note in a music score translates to an audio signal. It is
useful when one wishes to incorporate, in a unified frame-
work, various sources of uncertainties present in music,
such as inclusion of parts [13], mistakes [14], or timbral
variations [15–17].

Previous studies in generative audio alignment [13, 18]
ignores the organization present in musical composition,
by assuming that a piece of music is generated from a left-
to-right Markov chain, i.e., a Markov chain whose state
appears in the same order for all performances.

3. FORMULATION

We formulate a generative model of alignment that aligns
D performances. We provide a conceptual overview, and
then mathematically formalize the concept.

3.1 Conceptual Overview

We first extract short-time audio features from each of D
performances. Let us denote the feature sequence for the
dth performance at frame t ∈ [1, Td] as xd,t, where Td is
the total number of frames for the dth audio signal. Here,
the kind of feature is arbitrary, and depends on the gener-
ative model of the short-time audio. Then, we model xd,t

as a set of D state sequences. Each state is associated with

a unique generative process of short-time audio feature. In
other words, each state represents a distinct audio feature,
e.g., distinct chord, f0 and so on, depending on how the
generative model of the feature is designed.

For audio alignment, the state sequence must abide by
two rules. First, the order in which each state appears is
the same for all D feature sequences. In other words, every
performance is described by one sequence of distinct audio
features, i.e., the musical piece that the performances play
in common. We call such a sequence the latent composi-
tion. Second, the duration that each performance resides in
a given state in the latent composition can be unique to the
performance. In other words, each performance traverses
the latent composition with a unique “tempo curve.” We
call the sequence that each performance traverses over the
latent composition sequence as the performance sequence.

The latent composition is a sequence of length N drawn
from an ergodic Markov model, which we call the latent
common structure. We describe the latent composition as
zn, a sequence of length N and S states, where each state
describes a distinct audio feature. In other words, we as-
sume that the musical piece is described by at most N dis-
tinct audio events, using at most S distinct sounds. The
latent common structure encodes the structure inherent to
the music. The transition probabilities of each state sheds
light on a “typical” performance, e.g., melody line or har-
monic progression. Therefore, the latent common structure
provides a generative model of music composition.

The performance sequence provides a generative model
of performance. Each audio signal is modeled as an emis-
sion from a N -state left-to-right Markov model, where the
nth state refers to the generative model associated with the
nth position in the latent composition. Specifically, let
us denote the performance sequence for audio d as ϕd,t,
which is a state sequence of length Td and N states, such
that state n refers to the nth element of the latent composi-
tion. Each performance sequence is constrained such that
(1) it begins in state 1 and ends at state N , and (2) state n
may traverse only to itself or state n+1. In other words, we
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Figure 3. Graphical model of our method. Dotted box
indicates that the arrow depends on all variables inside the
dotted box. Hyperparameters are omitted.

constrain each performance sequence to traverse the latent
composition in the same order but with a unique duration.
Such a model conveys the idea that each performance can
independently play a piece in any tempo trajectory.

3.1.1 An Example

Let us illustrate our method in Figure 2. In the example,
S = 3 and N = 5, where state “A” corresponds to a combi-
nation of notes G, C and F, “B” corresponds to the note C,
and so on; moreover, zn encodes the state sequence “AB-
BCB,” as to reflect the underlying common music compo-
sition that the performances play. Note that a single note
may be expressed using more than one state in the latent
composition, e.g., both z2 and z3 describe the note “C.”
Next, each performance aligns to the latent composition,
through the performance sequence. Each state of the per-
formance sequence is associated to a position in the latent
composition. For example, ϕ1,3 is associated to position
2 of z, z2. Then, at each time, the observation is gener-
ated by emitting from the state in latent common structure
referred by the current frame of the current audio. This is
determined hierarchically by looking up the state n of the
performance sequence of audio d at time t, and referring to
the state s of the nth element of the latent composition. In
the example, ϕ1,3 refers to state n = 2, so the generative
model corresponding to zn=2, or “B,” is referred.

3.2 Formulation of the Generative Model

Let us mathematically formalize the above concept using a
probabilistic generative model, summarized as a graphical
model shown in Fig. 3.

3.2.1 Latent Composition and Common Structure

The latent composition is described as zn={1···N}, a S-
state state sequence of length N , generated from the latent
common structure. We shall express the latent composition
zn using one-of-S representation; zn is a S-dimensional
binary variable where, when the state of zn is s, zn,s =
1 and all other elements are 0. Then, we model z as a
sequence from the latent common structure, an ergodic
Markov chain with initial state probability π and transition
probability τ :

p(z|π, τ ) =
S∏

s=1

πz1,s
s

N,S,S∏
n=2,s′=1,s=1

τ
zn−1,s′zn,s

s,s′ (1)
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Figure 4. Structural annotation on Chopin Op. 41-2 and
the similarity matrix computed from its latent composition.

Each state s is associated with an arbitrary set of param-
eters θs that describes the generative process of the audio
feature. We assume that τ s is generated from a conjugate
Dirichlet distribution, i.e., τ s ∼ Dir(τ 0,s). The same goes
for the initial state probability π, i.e., π ∼ Dir(π0). The
hyperparameters τ 0,s and π0 are set to a positive value less
than 1, which induces sparsity of τ and π, and hence leads
to a compact latent common structure.

The latent composition and structure implicitly convey
the information about how the music is structured and what
its building blocks are. Figure 4 shows a similarity matrix
derived from the estimated latent composition of Op. 41-2
by F. Chopin3 having the ternary form (a.k.a. ABA form).
The first “A” section repeats a theme of form “DEDF” re-
peated twice. The second section is in a modulated key.
Finally, the last section repeats the first theme, and ends
with a short coda, borrowing from “F” motive from the first
theme. Noting that the diagonal lines of a similarity ma-
trix represent strong similarity, we may unveil such a trend
by analyzing the matrix. The bottom-left diagonal lines in
the first section, for example, shows that a theme repeats,
and the top-left diagonal suggests that the first theme is re-
peated at the end. This suggests that the latent composition
reflects the organization of music.

Notice that this kind of structure arises because we ex-
plicitly model the organization of music, conveyed through
an ergodic Markov model; simply aligning multiple per-
formances to a single left-to-right HMM [13, 18] is insuf-
ficient because it cannot revisit a previously visited state.

3.2.2 Performance Sequence

Recall that we require the performance sequence such that
(1) it traverses in the order of latent composition, and (2)
the duration that each performance stays in a particular
state in the latent composition is conditionally indepen-
dent given the latent composition. To satisfy these require-
ments, we model the performance sequence as a N -state
left-to-right Markov chain of length Td, ϕd,t, where the
first state of the chain is fixed to the beginning of the latent

3 The similarity matrix Ri,j was determined by removing self-
transitions from zn and assigning it to z′, and setting Ri,j = 1 if
z′
i = z′

j , and 0 otherwise. Next, we convolved R by a two-dimensional
filter that emphasizes diagonal lines.
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composition and the last state to be the end. This assumes
that there are no cuts or repeats unique to a performance.
Let us define ηd,n to be the probability for performance d to
traverse from position n of the latent composition to n+1.
Then, we model the performance sequence as follows:

p(ϕd,t={1···Td}) = δ(n, 1)ϕd,1,nδ(n, S)ϕd,Td,n

×
∏Td,N

t=1,n=1

[
η
ϕd,t−1,nϕd,t,n+1

d,n

× (1− ηd,n)
ϕd,t−1,nϕd,t,n

]
(2)

where δ(x, y) indicates the Kronecker Delta, i.e., its value
is 1 when x = y and 0 otherwise. We assume ηd,n is drawn
from a conjugate Beta distribution, i.e., ηd,n ∼ Beta(a0, b0).
The ratio a0/b0 controls the likelihood of traversing to next
states, and their magnitudes control the influence of the ob-
servation on the posterior distribution.

Figure 5 shows excerpts of the feature sequences ob-
tained from two performances, and blue lines indicating
the change of the state of the latent composition has changed.
The figure suggests that the state changes with a notable
change in the feature, such as when new notes are played.
Since, by the definition of a left-to-right Markov model, the
number of vertical lines is identical for all performances,
we can align audio signals by mapping the occurrences of
the ith vertical line for all performances, for each i.

3.2.3 Generating Audio Features

Based on the previous expositions, we can see that at time t
of performance d, the audio feature is generated by choos-
ing the state in the latent common structure that is referred
at time t for performance d. This state is extracted by re-
ferring to the performance sequence to recover the position
of the latent composition. Therefore, the observation like-
lihood is given as follows:

p(xd,t|z,ϕ,θ) =
∏
s,n

p(xd,t|θs)
zn,sϕd,t,n (3)

Here, p(x|θs) is the likelihood of observation feature x at
state s of the latent common structure, and its parameter
θs is generated from a prior distribution p(θs|θ0).

For the sake of simplicity, we let p(xd,t|θs) be a dim(x)-
dimensional Gaussian distribution with its parameters θs

generated from its conjugate distribution, the Gaussian-
Gamma distribution. Specifically we let θs = {µs, λs},
θ0 = {m0, ν0, u0,k0}, and let xd,t|µs,λs∼N (µs,λ

−1
s ),

with p(µs,i,λs,i)∝λ
u0− 1

2
s e−(µs,i−m0,i)

2λs,iν0−k0,iλs,i . One
may incorporate a more elaborate model that better ex-
presses the observation.

3.3 Inferring the Posterior Distribution

We derive the posterior distribution to the model described
above. Since direct application of Bayes’ rule to arrive at
the posterior is difficult, we employ the variational Bayes
method [19] and find an approximate posterior of form
q(ϕ, z,θ,η,π, τ ) =

∏
d q(ϕd,·)q(z)q(π)

∏
d,n q(ηd,n)∏

s q(θs)q(τ s) that minimizes the Kullback-Leibler (KL)
divergence to the true posterior distribution.

q(ϕ) and q(z) can be updated in a manner analogous to
a HMM. For q(z), we perform the forward-backward al-
gorithm, with the state emission probability gn at position
n of the latent composition and the transition probability
vs from state s given as follows:

log gn,s =
∑
d,t

⟨ϕd,t,n⟩⟨log p(xd,t|θs)⟩ (4)

log vs,s′ = ⟨log τs,s′⟩ (5)

Here, ⟨f(x)⟩ denotes the expectation of f(x) w.r.t. q. Like-
wise, for q(ϕd,t), we perform the forward-backward algo-
rithm, with the state emission probability hd,n and transi-
tion probability wd,s given as follows:

log hd,t,n =
∑
s

⟨zn,s⟩⟨log p(xd,t|θs)⟩ (6)

logwd,n,n′ =

{
⟨log ηd,n⟩ n = n′

⟨log(1− ηd,n)⟩ n+ 1 = n′ (7)

We can update π as q(π) = Dir(π0+⟨z1⟩), η as q(ηd,n) =
Beta(a0+

∑
t⟨ϕd,t−1,nϕd,t,n⟩, b0+

∑
t⟨ϕd,t−1,n−1ϕd,t,n⟩),

and τ as q(τ s) = Dir(τ 0,s +
∑N

n>1⟨zn−1,szn⟩).
Based on these parameters, the generative model of au-

dio features can be updated. Some commonly-used statis-
tics for state s include the count N̄s, the mean µ̄s and the
variance Σ̄s, which are given as follows:

N̄s =
∑
d,n,t

⟨zn,s⟩⟨ϕd,t,n⟩ (8)

µ̄s =
1

N̄s

∑
d,n,t

⟨zn,s⟩⟨ϕd,t,n⟩xd,t (9)

Σ̄s =
1

N̄s

∑
d,n,t

⟨zn,s⟩⟨ϕd,t,n⟩(xd,t − µ̄s)
2 (10)

For example, the Gaussian/Gaussian-Gamma model de-
scribed earlier can be updated as follows:

q(µs,λs) = NG
(
ν0 + N̄s,

ν0m0 + N̄sµ̄s

ν0 + N̄s
,

u0+
N̄s

2
,k0 +

1

2

(
N̄sΣ̄s+

ν0N̄s

ν0+N̄s
(µ̄s−m0)

2
))

(11)

Hyperparameters may be set manually, or optimized by
minimizing the KL divergence from q to the posterior.

3.4 Semi-Markov Performance Sequence

The model presented previously implicitly assumes that
the state duration of the performance sequence follows the
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geometric distribution. In such a model, it is noted, espe-
cially in the context of audio-to-score alignment [4], that
further improvement is possible by incorporating a more
explicit duration probability using an extension of the HMM
known as the hidden semi-Markov models [5, 20].

In this paper, we assume that every performance plays a
particular position in the music composition with more-or-
less the same tempo. Hence, we incorporate an explicit du-
ration probability to the performance sequence, such that
the duration of each state is concentrated about some av-
erage state duration common to each performance. To this
end, we assume that for each state n of the performance se-
quence, the state duration l follows a Gaussian distribution
concentrated about a common mean:

p(l|γn, c) = N (γn, cγ
2
n) (12)

We chose the Gaussian distribution due to convenience of
inference. By setting c appropriately, we can provide a
trade-off between the tendency for every piece to play in a
same tempo sequence, and variation of tempo among dif-
ferent performances.

To incorporate such a duration probability in the perfor-
mance sequence model, we augment the state space of the
left-to-right Markov model of the performance sequence
by a “count-down” variable l that indicates the number of
frames remaining in the current state. Then, we assume
that the maximum duration of each state is L, and repre-
sent each state of the performance ϕd,t as a tuple (n, l) ∈
[1 · · ·N ]× [1 · · ·L], i.e., ϕd,t,n,l. In this model, state (n, 1)
transitions to (n + 1, l) with probability p(l|µn+1, c), and
state (n, l) for l > 1 transitions to (n, l − 1) with prob-
ability one. Finally, we constrain the terminal state to be
(N, 1). Note that η is no longer used because state duration
is now described explicitly. The parameter γn can be op-
timized by maximum likelihood estimation of the second
kind, to yield the following:

γn =

∑
d,t,l l⟨ϕd,t−1,n−1,1ϕd,t,n,l⟩∑
d,t,l⟨ϕd,t−1,n−1,1ϕd,t,n,l⟩

(13)

c may be optimized in a similar manner, but we found that
the method performs better when c is fixed to a constant.

4. EVALUATION

We conducted two experiments to assess our method. First,
we tested the effectiveness of our method against exist-
ing methods that ignore the organization of music [13,18].
Second, we tested the robustness of our method to the length
of the latent composition, which we need to fix in advance.

4.1 Experimental Conditions

We prepared two to five recordings to nine pieces of Chopin’s
Mazurka (Op. 6-4, 17-4, 24-2, 30-2, 33-2, 41-2, 63-3, 67-
1, 68-3), totaling in 38 audio recordings. For each of the
nine pieces, we evaluated the alignment using (1) DTW us-
ing path constraints in [21] that minimizes the net squared
distance (denoted “DTW”), (2) left-to-right HMM to model
musical audio as done in existing methods [13, 18] (de-
noted “LRHMM”), (3) proposed method (denoted “Pro-
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E
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o
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Figure 6. Percentile of absolute alignment error. Aster-
isks indicate statistically significant difference over DTW
(p=0.05) and circles indicate statistically significant differ-
ence over LRHMM (p=0.05), using Kruskal-Wallis H-test.

posed”), and (4) proposed method with semi-Markov per-
formance sequence (denoted “Proposed (HSMM)”). For
the feature sequence xd,t, we employed the chroma vector
[11] and half-wave rectified difference of the chroma (∆
chroma), evaluated using a frame length of 8192 samples
and a 20% overlap with a sampling frequency of 44.1kHz.

For the proposed method, the hyperparameters related
to the latent common structure were set to π0 = 0.1 and
τ0,s,s′ = 0.9 + 10δ(s, s′); these parameters encourages
sparsity of the initial state probability and the state tran-
sitions, while encouraging self-transitions. The parame-
ters related to the observation were set to u0 = k0 = 1,
ν0 = 0.1 and m0 = 0; such a set of parameters en-
courages a sparse variance, and assumes that the mean
is highly dispersed. Moreover, we used S = 100 and
N = 0.3mind Td. For the semi-Markov performance se-
quence model, we set c = 0.1. This corresponds to having
a standard deviation of γn

√
0.1, or allowing the notes to

deviate by a standard deviation of about 30%.

4.2 Experimental Results

We present below the evaluation of the alignment accu-
racy and the robustness to the length of the latent compo-
sition. On a workstation with Intel Xeon CPU (3.2GHz),
our method takes about 3 minutes to process a minute of
single musical audio.

4.2.1 Alignment Accuracy

We compared the aligned data to that given by reverse con-
ducting data of the Mazurka Project [1]. Figure 6 shows
the absolute error percentile. The figure shows that our
method (“Proposed”) performs significantly better than the
existing method based on a LRHMM. This suggests that,
for a generative model approach to alignment, not only is
model of performance difference critical but also that of the
common music that the performances play. We also note an
improved performance of the semi-Markov model perfor-
mance sequence (“Proposed (HSMM)”) over the Marko-
vian model (“Proposed”).

Note that when using the same features and squared-
error model, the semi-Markovian model performs better
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Figure 7. Median alignment error against α.

than DTW. This result suggests that with appropriate struc-
tural and temporal models, a generative model approach is
a viable alternative to audio alignment. The performance
gain from Markov to semi-Markov model illuminates the
forte of the generative model approach: temporal, spectral
and structural constraints are mixed seamlessly to attain a
trade-off among the trichotomy.

We note that our model is weak to compositional devi-
ations, such as added ornaments and repeats because we
assume every performance plays an identical composition.
We observed that our method deals with an added note as
a noise or a note that gets played very shortly by most of
the audio signals, but neither captures the nature of added
notes as structural deviations. Moreover, our method some-
times gets “trapped” in local optima, most likely due to the
strong mutual dependency between the latent variables.

4.2.2 Robustness to the Length of the Latent Composition

Since our method requires the user to set the length of la-
tent composition N , we evaluated the quality of alignment
as N is varied. To evaluate the performance of our method
with different values of N , we evaluated the alignment of
the proposed method when N is set to N = α|Td=1|, with
α ranging from α = 0.1 to α = 0.9 with an increment
of 0.1. Figure 7 shows the median alignment error. We
find that when α is too small, when there is an insuffi-
cient number of states to describe a composition, the error
increases. The error also increases when α is too large,
since the maximum total allowed deviation decreases (i.e.,
to about (1−α)Td=1). However, outside such extremities,
the performance is relatively stable for moderate values of
α around 0.5. This suggests that our method is relatively
insensitive to a reasonable choice of N .

5. CONCLUSION

This paper presented an audio alignment method based on
a probabilistic generative model. Based on the insight that
a generative model of musical audio alignment should rep-
resent both the underlying musical composition and how
it is performed by each audio signal, we formulated a uni-
fied generative model of musical composition and perfor-
mance. The proposed generative model contributed to a
significantly better alignment performance than existing
methods. We believe that our contribution brings genera-
tive alignment on par with DTW-based alignment, opening
door to alignment problem settings that require integration
of various sources of uncertainties.

Future study includes incorporating better models of
composition, performance and observation in our unified
framework. In addition, inference over highly coupled hi-
erarchical discrete state models is another future work.
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