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Abstract 
In this paper, we introduce an ensemble speaker modeling 
using a speaker adaptive training (SAT) deep neural network 
(SAT-DNN). We first train a speaker-independent DNN (SI-
DNN) acoustic model as a universal speaker model (USM). 
Based on the USM, a SAT-DNN is used to obtain a set of 
speaker-dependent models by assuming that all other layers 
except one speaker-dependent (SD) layer are shared among 
speakers. The speaker ensemble matrix is created by 
concatenating all of the SD neural weight matrices. With 
matrix factorization technique, an ensemble speaker subspace 
is extracted. When testing, an initial model for each target 
speaker is selected in this ensemble speaker subspace. Then, 
adaptation is carried out to obtain the final acoustic model for 
testing. In order to reduce the number of adaptation parameters, 
low-rank speaker subspace is further explored. We test our 
algorithm on lecture transcription task. Experimental results 
showed that our proposed method is effective for unsupervised 
speaker adaptation. 
Index Terms: speaker adaptation, deep neural networks, 
ensemble modeling, lecture transcription  

1. Introduction 
Speaker adaptation is very important for achieving high 
recognition performance in automatic speech recognition 
(ASR). Great successes have been achieved in the traditional 
GMM-HMM framework by using speaker adaptation 
techniques. However, these techniques cannot be applied to 
the DNN-HMM framework straightforwardly since these two 
frameworks are fundamentally different. Two typical 
approaches have been proposed for DNN-HMM adaptation 
framework. In one approach, which is analogous to fMLLR 
and global MLLR techniques, a linear transformation is 
applied to weights of links to input and/or output nodes for 
DNN adaptation [1, 2, 3, 4]. Another approach is inspired by 
speaker adaptive training (SAT) in GMM-HMM framework. 
Speaker adaptive training deep neural network (SAT-DNN) 
has been proposed to achieve speaker normalization at training 
time [5, 6, 7]. In order to explicitly incorporate speaker 
information in adaptation, features related to speaker 
characteristics, for example i-vectors, are integrated as a 
specific network layer for SAT [5, 6]. In another SAT-DNN 
approach for speaker adaptation, adopting the ideas from 
multi-task learning, one layer is specified as a speaker-
dependent (SD) layer and all other layers are shared by all 
speakers in the DNN architecture [7]. 

No matter what techniques are used in adaptation, model 
generalization problem must be taken into consideration.  
DNN model has a huge number of free parameters, and thus is 

easy to fall into overfitting with limited adaptation data. 
Regularization technique has been proposed to avoid 
overfitting in adaptation and adaptive training. For example, 
Yu et al. [8] proposed a method to control the adaptation 
procedure by monitoring the KL-divergence from the baseline 
model. Liao et al. [9] introduced L2-regularization to 
effectively control speaker adaptation. These adaptation 
techniques try to update model parameters with regularization 
constraints that keep the updated models from deviating too 
far away from the “good” model. In most studies, the “good” 
model is a speaker-independent DNN (SI-DNN) model, i.e., 
an average model for all speakers. Recently, a theoretically 
attractive approach for DNN adaptation has been proposed 
based on low-rank approximation techniques for matrices. For 
example, a singular value decomposition (SVD)-based low-
rank matrix adaptation method for DNN is proposed [10]. The 
SVD based low-ranking matrix approximation [11] can prune 
the vast number of parameters to obtain a compressed DNN 
model without accuracy loss. In their approach, however, the 
initial model in adaptation is an SI-DNN model, i.e., an 
averaged model for all speakers.  

Doing adaptation either with a regularization technique or 
with a low-rank approximation technique based on an 
averaged acoustic model may not be good enough due to the 
large variations of the speaker acoustic space in real 
applications. In ensemble speaker and environment modeling 
technique [12, 13, 14], when choosing an initial model for 
adaptation, it is possible to choose one single speaker or a 
subgroup of speakers for adaptation. Inspired by this, we 
propose an ensemble speaker modeling framework for speaker 
adaptation using SAT-DNN.  

In the proposed framework, we first train an SI-DNN 
acoustic model as a universal speaker model (USM). Based on 
this USM, a SAT-DNN architecture is used to obtain a set of 
SD models by making all layers shared by all speakers except 
one SD layer. A speaker ensemble matrix is composed by 
concatenating all of the SD neural weight matrices. By 
applying SVD to the ensemble matrix, a full-rank or low-rank 
speaker subspace representation is extracted. Every SD weight 
matrix can be approximated in this speaker subspace. When 
testing, we select an initial model for each target speaker in 
this speaker subspace. And then, the adapted model is used for 
testing. We apply our algorithm to unsupervised speaker 
adaptation for lecture speech transcription. Experimental 
results show that our proposed method is effective for 
unsupervised speaker adaptation.  

The rest of this paper is organized as follows. Section 2 
introduces our proposed ensemble speaker modeling and 
adaptation scheme. Section 3 shows the implementation and 
evaluation of the proposed scheme, and conclusion is given in 
section 4. 
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2. Ensemble speaker modeling using 
speaker adaptive training DNN 

Rather than using only one SI-DNN model as an initial model 
in adaptation, we prepare many SD-DNN models, and choose 
the best one among them as an initial model for adaptation. 
The basic procedure is as follows: 
 

a) Train a USM, i.e., SI-DNN. 
b) Taking the USM as an initial model, train speaker-

dependent models, i.e., SD-DNNs. For training, a multi-
task learning architecture for SAT-DNN is adopted. 

c) Factorize the speaker-dependent weight matrices using 
SVD and obtain speaker-specific coefficient matrices. 
Then, perform low-rank matrix approximation to reduce 
the number of adaptation model parameters. 

d) Perform adaptation for a testing speaker by picking up 
an initial model in the speaker subspace. 

 
In the following subsections, each stage of the procedure is 

described in details. 

2.1. Multi-task learning architecture for SAT-DNN 
In multi-task learning, we suppose that some model 
parameters are shared by all tasks and each task has its own 
task-dependent parameters. It is shown that this multi-task 
learning strategy achieves better generalization than single-
task learning strategy in various task domains such as phone 
recognition and multilingual speech recognition [15, 16]. The 
SAT-DNN proposed in [7] can be regarded as a multi-task 
learning. In NICT-SAT-DNN [7], the DNN architecture is 
configured as shown in Figure 1. All of the DNN layers are 
shared among speakers except one SD layer. The parameters 
in the SD layer are updated only for a specific speaker while 
the parameters for all of the shared layers are updated for all 
speakers. Explicitly specifying one layer as an SD layer in 
training makes training focus much more on speaker 
adaptation in DNN. In speaker adaptive training, the initial 
model parameters are set as the model parameters of an SI-
DNN model. 
 

 
Figure 1: Multi-task learning architecture for SAT-DNN. 

2.2. Ensemble speaker matrix factorization 
From SAT-DNN introduced in section 2.1, we obtain a set of 
SD-DNN models (with shared neural weight matrices). 
Suppose the SD-DNN model is represented as the neural 
weight matrix of the SD layer as 

� �KiR nmi
sd ,...,2,1,* ��W

 

where K is the total number of speakers, m and n are the 
numbers of neurons for input and output, respectively, of the 
SD layers.  The ensemble speaker matrix is composed by 
concatenating these matrices as 

K*nl R l*mK
sd

2
sd

1
sdsd ��� ,  ],...,,[ WWWW

Δ  

Based on SVD matrix decomposition [17, 18], it is 
decomposed as 

� � � � � � ],...,,[**
TK

sd
T2

sd
T1

sdsd VVVSUW �                      (1) 

In this equation, nmR *�U is the left singular matrix, nnR *�S
is a diagonal matrix with elements as singular values. 
� � nnTi

sd R *�V  is the speaker coefficient matrix of the i-th 
speaker that satisfies: 

� �Ti
sd

i
sd VSUW **�                                                        (2) 

In DNN, this matrix factorization can be implemented as in 
Figure 2. 

 
Figure 2: Before (left) and after (right) matrix factorization in 

one layer of DNN. 
 

In this figure, black balls represent linear response neurons.  
The total transform effect of the factorized matrix is the same 
as only using one transform matrix i

sdW
 [11].  

2.3. Low-rank matrix approximation 
In order to reduce the number of model parameters in 
adaptation, low-rank approximation techniques are used. The 
ensemble speaker matrix can be approximated in a low-rank 
form as: 

� � � � � � ]~,...,~,~[*~*~ TK
sd

T2
sd

T1
sdsd VVVSUW �                          (3) 

where ddR *~
�S  is a diagonal matrix with top d largest singular 

values of S, and dmR *~�U  is a matrix with column vectors 
corresponding to singular values in S .   

� � ndTi
sd R *~ �V is the speaker coefficient matrix and d << 

min {m,n} is the low-rank value of the matrix. The advantage 
of using this low-rank approximation is that we can generate a 
small bottleneck layer in implementation which may make the 
model much more robust (or with better generalization ability) 
than using the full-rank matrix [10]. 

2.4. Adaptation on SAT-DNN ensemble models 
Under the SAT-DNN ensemble model framework, many 
adaptation strategies can be applied. In this study, we 
introduce two adaptation algorithms. 
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2.4.1. Updating speaker coefficient matrix of the SD 
layer 

As we have shown in section 2.2, one direct physical 
explanation of the ensemble matrix factorization (refer to Eqs. 
(1) and (2)) is that:  U*S is the weighted speaker subspace 
bases and  � �Ti

sdV   is the speaker coefficient matrix. For a test 
speaker, we can regard the adapted model as one point in this 
speaker subspace, and then the weight matrix for the SD layer 
of the target speaker should be in the form of 

� �Ttest
sd

test
sd VSUW **�                                                     (4)

 

This  � �Ttest
sdV  needs to be estimated in the adaptation model. 

This matrix is a function of training speakers as: 

� �	�



;,...,, 21 K
sdsdsd

test
sd VVVFV                                           (5) 

where F(.) is a function matrix with parameter Θ. It is difficult 
to obtain the solution if there is no prior knowledge of this F(.). 
If we suppose this mapping function is a linear regression of 
all training speakers, it is formulated as (for simplicity, the 
bias in linear regression model is omitted): 

�
�




�
K

i

i
sdi

test
sd

1
VAV

                                                           (6) 

where Ai is a regression matrix. If Ai is an identity matrix  
(Ai = I) for i=1, 2 … K, the adaptation model is the average of 
all training speakers as  

�
�




��
K

i

i
sd

train
sd

test
sd K 1

1 VVV
                                                 (7) 

If Ai=0 for all i except when i≠ best, then 

best
sdbest

test
sd VAV




�                                                           (8) 

This means only picking up the “best” speaker's model 
best
sdV  for adaptation. In implementation, rather than using the 

linear regression in Eq.(8), a direct parameter update algorithm 
for non-linear regression was applied for more accurate 
estimation. The matrix in DNN is decomposed into two 
components as shown in Figure 3. Only matrix parameters in 

test
sdV  are updated from an initial model of 

best
sdV  using 

adaptation data. 
 

 

Figure 3: Decomposition of weight matrix 
best
sdW for speaker 

coefficient matrix adaptation. 
 
In order to reduce the number of adaptation parameters, 

low-rank form as introduced in section 2.2 can be used. All of 
the equations and formulations in Eqs.(4), (5), (6), (7), (8) hold 
by changing corresponding matrix to its low-rank form. 

2.4.2. Updating singular values in the SD layer 
After picking up a “best” speaker's model for adaptation, we 
can suppose that the left and right singular vectors are fixed, 
only the singular values are adjusted to weight these two 
singular vectors for a testing speaker. We formulate this idea 
as follows.  

For an initial model (the “best” one from SAT-DNN 
ensembles), the factorization of the SD matrix is: 

� �Tbest
sd

best
sd

best
sd VUW �
�                                                (9)

 

where � �pi ����� ,...,,...,,diag 21�
 ,  p=min{m,n}.  

For a test speaker, we suppose that the bestU  and � �Tbest
sdV  

are kept the same and only the singular value matrix is updated 
as: 

� �Tbest
sd

best
sd

test
sd VUW �
�                                                (10) 

where � �pi ����� ,...,,...,,diag 21�
 .Then purpose of adaptation 
is to find a mapping function as: 

� � pig iii ,...,2,1, �� ��                                                (11) 

In real implementation, it is accomplished by inserting a 
linear transformation matrix M between best

sdU  and �
  
according to Eq.(10). Figure 4 shows the decomposition 
structure in DNN implementation. The transformation matrix 
M can be initialized by using identity matrix.  
 

 
Figure 4: Decomposition to weight matrix best

sdW for singular 
values adaptation. 

 
In this paper, we only update the diagonal elements of M. 

The advantage of singular value adaptation strategy is that 
only a small number of p parameters are involved in 
adaptation, i.e., the number of adaptation parameters is 
drastically reduced.  

3. Implementation and evaluations 

3.1. Corpus of spoken lectures 
We organize our speech data of Chinese lectures [19] into 
three parts as listed in Table 1.  
� TRN: For acoustic model training. 
� DEV: For validation when DNN training and adaptation.  
� TST: For evaluation the results. 

Table 1. Data descriptions. 

Data set #Speakers Duration (hours) 
TRN 184 97.2 
DEV 12 7.2 
TST 19 11.9 
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3.2. Baseline SAT-DNN model 
In baseline modeling, a GMM-HMM with 3000 tied-triphone-
states model was built by using the TRN set. For DNN model 
training, 40 dimensional filterbank features, plus their first and 
second derivatives were used as a feature set. The DNN has 
1320 neuron nodes in the input layer (5 frames on each side of 
the current frame), 3000 neuron nodes in the output layer, and 
1024 neuron nodes in each hidden layer (7 hidden layers). 
Training of SI-DNN consists of the unsupervised pre-training 
step and the supervised fine-tuning step. 184 speakers in the 
training set were used in SAT training based on the SI-DNN 
model. And finally, 184 SD-DNN models were obtained. 
Although in SAT-DNN, choosing the second or third hidden 
layer as the SD layer in adaptation could obtain a better result 
than choosing other layers as shown in [7], there is no clear 
theoretical support on which layer should be used as the SD 
layer in SAT training.  In this study, we only perform SAT 
training on the second hidden layer. Kaldi DNN toolkit (nnet1) 
[20] and theano library [21] were used in our implementation. 
And the training procedures used in [7] were followed in our 
implementation. 

The dictionary consists of 53K lexical entries from the 
TRN together with Hub4 and TDT4 corpora. The OOV rate on 
the TST is 0.368%. The pronunciation entries were derived 
from the CEDICT open dictionary. We adopt 113 phonemes 
(consonants and 5-tone vowels). 

A word trigram language model was built for decoding 
with Julius [22]. We complemented the small sized text of the 
TRN with lecture texts collected from the web, whose size is 
1.07M words. Then, this lecture corpus was interpolated with 
other three corpora (Hub4 of 0.34M, TDT4 of 4.75M, GALE 
of 1.03M) and lecture text archive from Phoenix TV station 
(Hong Kong) of 4.12M. The interpolated weights were 
determined to get the lowest perplexity on the DEV set. 

We conducted recognition experiments on the TST set to 
see whether the adaptation is effective or not. We modified 
Julius for fast decoding with the DNN acoustic model. This 
baseline system achieved an average Character Error Rate 
(CER) of 28.5% with the DNN-HMM model on the TST set. 

3.3. Experimental setups for ensemble speaker 
modeling 
By concatenating the weight matrices (1024 1024) of these 
SD layers, we got a super matrix (1024 188416).  SVD was 
applied on this super matrix for factorization. Based on the 
factorization, globally shared speaker subspace U (1024
rank), singular value matrix S (rank rank), and the coefficient 

matrix related to each speaker � �Ti
sdV  (rank 1024) were 

obtained. In experiments, four rank values (1024, 500, 300 and 
100) were tested and full rank value is 1024.  

When selecting the initial model for each testing speaker, 
we choose the SD layer with highest frame accuracy on the 
testing data compared to the labels derived in an unsupervised 
way. 

3.4. Experimental evaluations 
By gradually reducing the adaptation data for each testing 
speaker from 50 utterances (1 minute on average), to 30 
utterances (half a minute on average), and then to 10 
utterances (10 seconds on average), we carried out 
experiments to test the two adaptation algorithms as 
introduced in section 2.4, i.e., speaker coefficient matrix 

adaptation, and singular value matrix adaptation. Table 2 
shows the results for different experimental conditions. In this 
table, SAT means baseline SAT-DNN model. SAT-SVD-V 
denotes adaptation on speaker coefficient matrix V (with rank 
of the matrix specified in bracket), and SAT-SVD-S represents 
adaptation on the singular values. 

Table 2. Adaptation performances (CER% on TST). 

 Parameter 
size for 

adaptation 

w/o 
adaptation 

#utterances for 
adaptation 

50  30  10 
SAT  (baseline) 1024 1024 28.5 26.8 27.1 27.7 
SAT-SVD-V (r=1024) 1024 1024 28.5 26.8 26.9 27.5 
SAT-SVD-V (r=500) 1024 500 28.5 26.6 26.9 27.5 
SAT-SVD-V (r=300) 1024 300 28.4 26.5 27.0 27.6 
SAT-SVD-V (r=100) 1024 100 29.6 26.8 27.5 28.4 
SAT-SVD-S  1024 28.5 27.1 27.4 27.9 

The utterances are randomly selected from those sentences with the 
averaged word confidence score larger than 0.8. The improvements 
compared to the baseline with statistical significance (by the NIST Scoring 
Toolkit) are shown in bold fonts. 

 

From Table 2, we observed the rank and the adaptation 
data size exerted large influence to the adaptation results.  

For the first method (SAT-SVD-V), most of its 
performances are higher than or equivalent with the baseline 
SAT adaptation method, except when the rank is too small 
(100). SAT-SVD-V (rank=1024) outperforms SAT baseline on 
small data cases (30 utterances and 10 utterances), although 
they have the same number of parameters for adaptation. This 
result shows selecting the “best” initial model for adaptation is 
effective.  

We also notice that SAT-SVD-V is better than the baseline 
SAT adaptation at rank=300 and rank=500 after adaptation 
with all data cases. Especially for the rank=300, the bottleneck 
structure seems to introduce more robustness even without 
adaptation. The low-rank approximation based adaptation 
technique shows better accuracy with large reduction on 
number of adaptation parameters.  

The second method (SAT-SVD-S) is more sensitive to the 
adaptation data size due to its very limited number of 
parameters for adaptation (1024). But it still mostly 
outperforms the speaker coefficient matrix adaptation with 
low-rank case of SAT-SVD-V (r=100) which holds 100*1024 
model parameters. 

4. Conclusions 
In this paper, we proposed an ensemble speaker modeling 
framework for speaker adaptation using speaker adaptive 
training DNN with two different kinds of implementations. A 
speaker ensemble matrix is composed by concatenating all of 
the SD neural weight matrices. By applying SVD to the 
ensemble matrix, a full-rank or low-rank speaker subspace 
representation is extracted. When testing, we select an initial 
model for each target speaker in this speaker subspace.  The 
experimental results showed the effectiveness of the proposed 
scheme in improving the recognition performance. Our 
proposed scheme will be fully explored in our future work. 
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