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Abstract
The end-to-end (E2E) model allows for training of automatic
speech recognition (ASR) systems without having to consider
the acoustic model, lexicon, language model and complicated
decoding algorithms, which are integral to conventional ASR
systems. Recently, the transformer-based E2E ASR model
(ASR-Transformer) showed promising results in many speech
recognition tasks. The most common practice is to stack a
number of feed-forward layers in the encoder and decoder. As
a result, the addition of new layers improves speech recognition
performance significantly. However, this also leads to a large
increase in the number of parameters and severe decoding la-
tency. In this paper, we propose to reduce the model complexity
by simply reusing parameters across all stacked layers instead
of introducing new parameters per layer. In order to address the
slight reduction in recognition quality we propose to augment
the speech inputs with bags-of-attributes. As a result we ob-
tain a highly compressed, efficient and high quality ASR model.
Index Terms: Speech recognition, acoustic model, end-to-end
model, transformer

1. Introduction
Conventional GMM-HMM [1] and DNN-HMM [2] based auto-
matic speech recognition (ASR) systems require independently
optimized components: acoustic model, lexicon and language
model. The end-to-end (E2E) model integrates these compo-
nents into a single neural network. It simplifies ASR system
construction, solves the sequence labeling problem between
variable-length speech frame inputs and label outputs (phone,
character, syllable, word, etc.) and has achieved promising re-
sults on ASR tasks. Various types of E2E model have been stud-
ied in recent years: connectionist temporal classification (CTC)
[3, 4], attention-based encoder-decoder (Attention) E2E models
[5, 6], E2E lattice-free maximum mutual information (LFMMI)
[7], and E2E models jointly trained with CTC and attention-
based objectives (CTC/Attention) [8, 9, 10, 11].

Recently, the transformer [12] has been applied to E2E
speech recognition systems [13, 14, 15, 16] and has achieved
promising results. This transformer-based E2E ASR model
(ASR-Transformer) entirely relies on attentional and feedfor-
ward components [12] to draw the contextual dependencies;
this is a more aggressive technique compared with a time-delay
neural network [17, 18]. Therefore, it can be trained faster
with more parallelization, which is exactly what is required by
the E2E models in ASR. However, this simple block-by-block
stacking structure leads to severe problems. A deeper stacking
structure may achieve better recognition results, but it increases
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the size of the model by a significant amount and also increases
decoding latency.

In this paper, we propose a novel enhancement to substan-
tially reduce the transformer model parameters by sharing pa-
rameters across layers. Reducing the number of parameters
also leads to a drop in performance and hence we also propose
to introduce speech attributes (speaker information and speech
utterance properties) to augment the training data and thereby
enhance the performance of the compressed transformer-based
E2E model as an extension of [19, 14]. All the experiments
were performed on publicly available Japanese datasets (CSJ
[20]).

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the related work. Section 3 gives the data
description and baseline systems. Section 4 describes our pro-
posed methods and provides experimental evaluations. Conclu-
sions and future works are given in Section 5.

2. Transformer-based E2E ASR systems
In this section, we briefly review previous works related to the
ASR-Transformer.

2.1. Related Works on ASR-Transformer

The ASR-Transformer maps an input sequence, that is, the log-
Mel filterbank feature, to a sequence of intermediate representa-
tions by the encoder. The decoder generates an output sequence
of symbols (phones, syllables, characters, sub-words, or words)
given the intermediate representations. The big difference be-
tween the ASR-Transformer and commonly used E2E models
[5, 6] is that the ASR-Transformer completely relies on atten-
tion and feedforward components [12] as shown in Figure 1:
multi-head self-attention (MHA), positional-encoding (PE), and
position-wise feed-forward networks (PFFN). The blocks in the
encoders and decoders are defined as follows:

Figure 1: ASR-Transformer structure.

1. The encoder-block has MHA and PFFN layers consecu-
tively. Residual connections are used around each of the
MHA and PFFN layers. Residual dropout [21] is intro-
duced to each residual connection.
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2. The decoder-block is similar to the encoder-block except
for the addition of another MHA layer to perform atten-
tion over the output of the encoder-block stack.

3. PEs are added to the input at the bottoms of these
encoder-block and decoder-block stacks, providing in-
formation about the relative or absolute position of the
tokens in the sequence as well as length.

Recently, Dong et al. [13] applied the transformer model
to English speech recognition tasks on the WSJ corpus. Further
works in [16, 15] compared five modeling units on Mandarin
Chinese ASR tasks using a sequence-to-sequence attention-
based model with the transformer, including CI-phonemes, syl-
lables, words, sub-words (BPE [22]), and characters. Among
the five modeling units, character-based model achieved the best
result and established a new state-of-the-art CER on HKUST
datasets [23] without a hand-designed lexicon and additional
language model integration. Experiments in [14] also demon-
strated that multilingual single ASR-Transformer can be effec-
tively trained by providing the language mark as the sentence
start token. Experiments on multilingual speech recognition
were conducted on six languages of CALLHOME datasets 1,
with sub-words adopted as the multilingual modeling unit.

2.2. Existing Works on Improving Transformer Models

The most prominent approach for reducing the size of a neural
model is knowledge distillation [24], which requires training a
parent model, which can be a time-consuming task. Work on
zero-shot NMT [25] demonstrated that it is possible for multi-
ple language pairs to share a single encoder and decoder with-
out an appreciable loss in translation performance. However,
this work did not consider sharing the parameters across the
stacked layers in the encoder or decoder. The work on univer-
sal transformer [26] demonstrated that feeding the output of the
multi-layer encoder (and decoder) to itself repeatedly leads to
an improvement for English-German translation. However, this
work did not consider the accelerating speed of training and
testing. Dabre et al. [27] proposed a novel modification to the
NMT architecture, where parameters are shared across layers.

3. Data Descriptions and Baseline Systems
3.1. Data Descriptions

In this work, we use the “Corpus of Spontaneous Japanese
(CSJ)” [20]. We used approximately 577 hours of lecture
recordings as the training set (CSJ-Train) according to [28,
29, 11, 30]. Three official evaluation sets (CSJ-Eval01, CSJ-
Eval02, and CSJ-Eval03), each containing ten lecture record-
ings [30], were used to evaluate the speech recognition results.
Ten lecture recordings were selected for development (CSJ-
Dev).

3.2. Baseline ASR Performance

We used the implementation version-1.2.0 of the Transformer-
based neural machine translation (NMT-Transformer) [12] in
tensor2tensor 2 for all our experiments. The training and testing
settings listed in Table 1 were similar to those in [16].

We used 72-dim filterbank features (24-dim static +∆
+∆∆), which were mean and variance normalized per speaker,

1https://catalog.ldc.upenn.edu/LDC96S34, LDC96S37, LDC97S45,
LDC96S35, LDC97S42, LDC97S43

2https://github.com/tensorflow/tensor2tensor

Table 1: Major Experimental Settings

Model structure
Attention-heads 8 Decoder-blocks 6
Hidden-units 512 Residual-drop 0.3
Encoder-blocks 6 Attention-drop 0.0
Training settings
Max-length 5000 GPUs (K40m) 4
Tokens/batch 10000 Warmup-steps 12000
Epochs 30 Steps 300000
Label-smooth 0.1 Optimizer Adam
Testing settings
Ave. chkpoints last 20 Batch-size 100
Length-penalty 0.6 Beam-size 13
Max-length 50 GPUs (K40m) 4

Table 2: ASR performance (CER%) of the ASR-Transformer
models trained with different units

Network #unit CER%
E01 E02 E03 Ave.

char 3178 8.2 5.9 6.6 6.9
word 98245 10.2 8.6 9.7 9.5
WPM 3000 8.4 6.1 6.3 6.9

8000 7.8 6.0 6.1 6.6

and four frames were spliced (four left, one current and zero
right). Speed-perturbation [31] was not used to save training
time. We trained the baseline ASR-Transformer models us-
ing CSJ-Train. For testing, we decoded the speech from test
sets (CSJ-E01/02/03) and evaluated our models using the char-
acter error rate (CER%). Several modeling units were com-
pared on Japanese ASR tasks as shown in Table 2, including
words, word-piece-model (WPM)[32] and characters. We used
the sentence-piece toolkit 3 as the sub-word segmenter. We used
separate 3000 and 8000 sub-word vocabularies. The model
trained with 8000 WPM sub-word vocabulary is statistically
significantly better than the other models and will henceforth
be considered as the baseline (the two-tailed t-test at p-value <
0.05).

We also compared a set of other state-of-the-art systems
with the ASR-Transformer (WPM 8000) as shown in Table 3.

The first three models are the hybrid DNN-HMM model
and TDNN model. DNN-HMM-CE and DNN-HMM-sMBR
use the same seven-layer DNN-HMM model (approximately
8500 senones) trained with cross-entropy (CE) and then state-
level minimum Bayes risk (sMBR) criteria according to [34].
TDNN-LFMMI is the TDNN model (TDNN-a with approxi-
mately 3000 re-clustered senones) trained with LFMMI objec-
tive [33].

The second group are E2E models. BLSTM-CTC is the
CTC model with five bi-directional LSTM (BLSTM) layers
trained with 266 syllable-level labels given in [34]. Attention is
the reproduce of the attention encoder-decoder E2E models im-
plemented in [10] using a deeper (five-layer) encoder and two
different word-level vocabulary sizes. CTC/Attention is the
CTC and attention jointly trained model with 3315 characters
as basic units implemented in [8] (MTL-large), and the struc-
ture is five BLSTM layers as an encoder and one LSTM layer
as a decoder.

The DNN-HMM, TDNN and CTC models use 4-gram
word language models in the WFST decoding framework.

3https://github.com/google/sentencepiece
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Table 3: ASR performance (CER%) of the ASR-Transformer
(WPM 8000) compared with other baselines

Network #Para. CER%
E01 E02 E03 Ave.

DNN-HMM-CE 38M 9.7 7.8 8.4 8.6
DNN-HMM-sMBR 38M 8.8 7.1 7.4 7.8
TDNN-LFMMI [33] 11M 8.3 6.6 6.5 7.1
BLSTM-CTC [34] 11M 9.4 7.3 7.5 8.1
Attention (#word = 34330) 22M 9.6 8.0 8.9 8.8
Attention (#word = 3260) 12M 9.4 7.3 7.5 8.1
CTC/Attention [8] 10M 8.4 6.1 6.9 7.1
ASR-Transformer 220M 7.8 6.0 6.1 6.6

Other E2E models use one-pass decoding without language
models. Detailed settings are available in related papers.

From Table 3, the ASR-Transformer significantly (the two-
tailed t-test at p-value < 0.05) output-performs other models.
This result is consistent with [16]. However, the size of this
model is almost ten times larger than the other models. This
is the biggest obstacle for model deployment, especially in
memory-constrained devices.

4. Proposed Method for Improving Neural
Structures for the ASR-Transformer

In this section, we introduce our proposed method for improv-
ing ASR-Transformer systems.

4.1. Compressing Model Size by Parameter Sharing

We share the parameters in the stacked structure to compress
the model parameters as shown in Figure 2.

Figure 2: ASR-Transformer with parameter sharing.

For an ASR-Transformer model with n-block stacking en-
coder and n-block stacking decoder (n > 1), we first create the
parameters of the first encoder-block and first decoder-block.
For other encoder-blocks and decoder-blocks, we reuse the pa-
rameters of the first encoder-block and decoder-block. To un-
derstand what each depth of stacking brings about, we trained
and evaluated the following models:

1. Full-model: 1, 2, 3, 4, 5, 6 and 9-block (for both en-
coder and decoder) models without any shared parame-
ters across layers.

2. Shared-model: 1, 2, 3, 4, 5, 6 and 9-block (for both
encoder and decoder) models with parameters shared
across all layers. These are referred to as 1-1, 2-2, 3-3,
4-4, 5-5, 6-6 and 9-9 by indicating the number of blocks
in the encoder and decoder.

We trained all models with the default ADAM optimizer
with learning rate warm-up and decay. The training procedure
is the same regardless of whether we use layer sharing or not.

Table 4: ASR performance (CER%) and real-time factor (RTF)
of shared-models compared with full-models

Model Blocks RTF CER%
(#Para.) (n-n) (1 K40m) E01 E02 E03 Ave.
Full 1-1 0.025 17.3 14.3 17.1 16.2
(36M×n) 2-2 0.043 10.7 8.5 8.9 9.4

3-3 0.060 8.4 6.8 7.2 7.5
4-4 0.078 8.5 6.3 6.7 7.2
5-5 0.091 8.4 6.1 6.4 7.0
6-6 0.115 7.8 6.0 6.1 6.6
9-9 0.169 7.7 5.7 6.1 6.5

Shared 2-2 0.028 11.5 9.0 9.9 10.1
(36M) 3-3 0.034 10.5 7.8 8.5 8.9

4-4 0.037 9.9 7.5 8.5 8.6
5-5 0.046 9.4 7.1 8.1 8.2
6-6 0.054 9.5 7.3 8.3 8.4
9-9 0.074 9.9 7.6 8.0 8.5

The results compared with the 6-6 model in their own catergory (full or shared)
without statistical significance (the two-tailed t-test at p-value < 0.05) are in bold
font.

It should be noted that in the case of full models, different sets
of layer parameters receive a different number of updates but
in the shared models a single set of layer parameters receive a
large number of updates. It is possible that the large number of
feedback signals received by the shared models causes them to
approach the performance of the full models. We plan to verify
this in the future.

From Table 4, we found that both the full and shared-
models can benefit from deeper structures. For the shared-
model, the number of parameters was 36M (w/o output layer)
regardless of how many blocks were in the stack. Additionally,
the 6-6 shared-model corresponds to a six-times reduction in the
number of parameters compared with the best vanilla 6-6 full-
model (216M w/o output block). With the sacrifice of 1.6%
averaged CER%, it decoded twice as fast with a single GPU.
Using more than six blocks (for both encoder and decoder) did
not achieve significant improvement and even had a negative
influence on both types of models.

We observed approximately 10% acceleration in parallel
training (8 K40m) of a shared-model compared with the full-
model of the same depth. We expect that the shared-model
with fewer parameters will converge faster than the full-model
in small-data tasks, such as WSJ (si84) or CHiME4.

Technically, sharing parameters does not reduce the amount
of computation. Our empirical explanation about faster decod-
ing speed is that the weight matrix has a high chance of being
cached into the GPU L1/L2 caches. In a normal transformer,
there are multiple weight matrices for each layer and will un-
doubtedly lead to a larger number of cache swaps which will
negatively affect the speed. We verified the hypothesis that us-
ing the same parameters across all layers can speed up the train-
ing and decoding processes, which Dabre et al. [27] didn’t re-
port.

4.2. Improving the ASR-Transformer with Speech At-
tribute Augmentation

Since there is a performance gap between the shared-model
and the full-model, we propose to introduce speech attributes
(speaker information and speech utterance properties) and aug-
ment the training data to enhance the transformer-based E2E
model as an extension of [19, 14]. The speech attributes are
defined as follows.

1. Duration of the utterance (DUR): Short (up to 3 sec-
onds), Long (more than 3 seconds)
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Table 5: ASR results (CER%) of 6-6 shared-models with different speech attributes combinations on E01/E02/E03 (The results com-
pared with the 6-6 full-model without significance difference at p-value < 0.05 are shown in bold font.)

Model Combination of ASR (CER%)
Speech Attributes E01 E02 E03 Ave.

Shared-model (6-6) w/o attribute (same one in Table 4) 9.5 7.3 8.3 8.4
DUR 8.4 6.3 6.8 7.2
TOP 8.4 6.5 6.6 7.2
SEX 8.1 6.2 6.6 7.0
AGE 8.3 6.3 6.5 7.0
EDU 8.5 6.4 6.7 7.2
SPK 11.2 8.8 9.3 9.8
SEX+AGE 8.2 6.3 6.5 7.0
SEX+DUR 8.0 6.0 6.6 6.9
DUR+AGE 8.1 6.4 6.7 7.1
DUR+TOP+SEX 8.3 6.4 6.6 7.1
DUR+SEX+AGE 7.9 6.3 6.5 6.9
DUR+TOP+SEX+AGE 8.1 6.3 6.3 6.9
TOP+SEX+AGE+EDU 8.4 6.5 7.0 7.3
DUR+SEX+AGE+EDU 8.3 6.7 6.5 7.2
DUR+TOP+SEX+AGE+EDU 8.1 6.6 6.7 7.1
TOP+SEX+AGE+EDU+SPK 8.8 6.8 7.0 7.5

Full-model (6-6) w/o attribute (same one in Table 4) 7.8 6.0 6.1 6.6
SEX 7.9 6.2 6.2 6.8
DUR+SEX+AGE 7.6 6.1 6.3 6.7

2. Topic of the lecture (TOP): Academic, Simulated, Dia-
logue, Read, Misc, and Unknown

3. Sex of the speaker (SEX): Male, Female, and Unknown

4. Age of the speaker (AGE): Young (10-20s), Middle-age
(30-50s), Old (60-80s), and Unknown

5. Education of the speaker (EDU): Middle-school, High-
school, Bachelor, Master-Doctor, and Unknown

6. The speaker ID (SPK): 1550 speaker IDs

We feed these speech attribute labels as a ground-truth
in training, and the combinations of speech attributes (e.g.,
<Male> <Long> <Master-Doctor>) are inserted to the be-
ginning of the label of the training utterances. The training
labels are organized as “<S> <Male> <Long> <Master-
Doctor> labels </S>”. The network is trained to output them
at the beginning of decoding automatically, so we do not have
to prepare classifiers for these attributes.

We train both the 6-6 shared-model and 6-6 full-model with
speech attribute augmentation. As shown in Table 5, we first se-
lect the best single attributes, then use their combinations to get
the best result. We find that the best single attribute is SEX. The
DUR+TOP+SEX+AGE combination gives the best results on
all of the test sets. However, considering the easiness of system
construction, the DUR+SEX+AGE is adopted. We discovered
that the decoding speed would not be influenced by using more
attributes.

We also used the DUR+SEX+AGE and SEX as two kinds
of attributes for training the 6-6 full-model. The proposed
speech attributes augmentation training was not effective for
the 6-6 full model (bottom of Table 5). The full-sized model
has a vast number of parameters to learn the speech attributes
by itself without explicitly telling them in the label. For the
shared-model of much smaller size, feeding these speech at-
tribute labels as a ground-truth is effective in improving perfor-
mance during decoding.

5. Conclusions and Future Work
In this paper, we proposed a novel method to efficiently train the
ASR-Transformer by parameter sharing and introducing bags-
of-attributes of speech to augment the training data. The com-
pressed and attributes-augmented trained model achieved re-
sults that are comparable to the full model without any parame-
ter sharing. In the future, we will perform an in-depth analysis
of the proposed method, in addition to combining our methods
with knowledge distillation approaches for high-performance
compact modeling. We will also investigate the inner work-
ings of parameter sharing so as to explain why it works despite
having a substantially lower number of parameters.
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