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Abstract
The end-to-end (E2E) model allows for training of automatic
speech recognition (ASR) systems without the hand-designed
language-specific pronunciation lexicons. However, construct-
ing the multilingual low-resource E2E ASR system is still
challenging due to the vast number of symbols (e.g., words and
characters). In this paper, we investigate an efficient method
of encoding multilingual transcriptions for training E2E ASR
systems. We directly encode the symbols of multilingual
writing systems to universal articulatory representations, which
is much more compact than characters and words. Compared
with traditional multilingual modeling methods, we directly
build a single acoustic-articulatory within recent transformer-
based E2E framework for ASR tasks. The speech recognition
results of our proposed method significantly outperform the
conventional word-based and character-based E2E models.
Index Terms: Speech recognition, acoustic model, End-to-End
multilingual model, universal articulatory attributes

1. Introduction
Nowadays, people using different languages require a reliable
speech-to-speech (S2S) translation system for communications
in international affairs. As one of the most critical components
in the S2S systems, multilingual speech recognition has been
investigated for many years [1, 2, 3, 4, 5] and achieved encour-
aging results. For traditional context-dependent deep neural
network hidden Markov models (CD-DNN-HMM) [6], hand-
designed language-specific pronunciation lexicons must be em-
ployed. This is not a big problem for the widely used languages
(e.g., English), because their modeling techniques have been
fully studied for decades. However, this severely limits their ap-
plication to low-resource languages. Recent End-to-End (E2E)
attention-based models remove this dependency on the pronun-
ciation lexicon [7]. Instead of alphabets, many languages using
other writing systems (such as Abugidas) typically have more
symbols than alphabets. As a result, the output nodes of the
softmax layer are too large and make constructing multilingual
E2E ASR system very challenging.

The articulatory attribute modeling, also known as
“acoustic-to-articulatory(-attribute) modeling”, is widely used
to describe the attributes of different articulators during human
speech production. Articulation means the movement of the
tongue, lips, and other organs to make speech sounds, which
share in common universally by all human beings. Articula-
tory information has been demonstrated useful in many related
areas, such as speech comprehension improvement [8], speech
therapy [9, 10, 11], pronunciation perceptual training [12, 13],
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robust speech recognition [14, 15] and large vocabulary contin-
uous speech recognition (LVCSR) [16]. We can also encode
many languages with articulatory sequences using very com-
pact universal representations. Although the existing languages
in the world are different in grammar and syntax, their pronun-
ciations can be decomposed into a set of “atom” units of the
articulation.

In previous researches on automatic speech attribute tran-
scription [17, 18, 19, 20, 16], many detectors are trained to gen-
erate a bank of speech attributes. These attributes are either
concatenated with speech features or used separately to detect
a specific pronunciation. These methods are based on DNN-
HMM models requiring context-dependent frame-level articu-
latory labels.

In this study, we investigate an efficient method of encoding
multilingual transcriptions with universal articulatory represen-
tations. Using the articulatory representations as labels, we di-
rectly build a single articulatory attribute model based on recent
transformer-based E2E framework for multilingual ASR tasks.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our proposed method. Section 3 provides exper-
imental evaluations with different tasks. Conclusions and future
works are given in Section 4.

2. Proposed Method
The proposed method of this paper (shown in Figure 1) is intro-
duced in following subsections.

2.1. E2E Multiligual Articulatory Attribute Model

As we introduced in Section 1, multilingual speech recognition
has been investigated for many years. For GMM-based sys-
tems, global Phones or IPA-like symbols [5] was commonly
used for multilingual ASR. For DNN-based systems, multitask
learning integrated with Global Phones achieved encouraging
results [1, 2, 3, 4]. In these methods, the hidden layers are
shared across multiple languages while the softmax layers are
language dependent. They are optimized jointly by specifying
the primary task and secondary task in the objective function.
Multilingual articulatory attribute modeling [21, 22] relies on
the multitask learning method [1, 2, 3, 4].

We follow the state-of-the-art multilingual transformer-
based model [23] to train a single E2E model for multilingual
articulatory attributes. The most significant difference between
the transformer and commonly used E2E models [24, 25] is
that the transformer entirely relies on attention and feedforward
components [26]. In our proposed model, the log-Mel filterbank
features of an input sequence are mapped to an output sequence
of articulatory attributes. The detailed settings for training are
described in Section 3.2.
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Figure 1: The flowchart of the proposed method (taking Myanmar language as example).

2.2. Universal Articulatory Representations

Table 1: Universal Articulatory Representations
Catergories Attributes
Consonants Velar (K)
(placement) Palatal (C)

Coronal (T)
Labial (P)
Glottal (Q)

Consonants Aspired (h)
(manner) Voiced (v)

Nasal (n)
Trill (R)
Lateral approximant (L)
Labial/Labio-velar approximant (W)
Palatal approximant (Y)
Sibilant fricative (S)
Non-sibilant fricative (H)

Vowel (A) Round (r)
Front (f)
Close (c)
Tonal (t)
Visarga (h)
Anunasika (n)

Special Marks Repeat Removal (+)

Visarga is an allophone of /r/ and /s/ in pausa (at the end of an utter-
ance). Anunasika (anunasika) is a form of vowel nasalization.

As it is pointed out in Section 1, pronunciations from all of
the existing languages can be decomposed into a set of “atom”
units of the articulation. To retrieve the articulatory dynam-
ics from speech signal is known as the acoustic-to-articulatory-
attribute modeling. Taking advantage of modern devices such
as EMA [27], X-ray [28], ultrasound [29] and MRI [30], it has

also been used to search the acoustic correlates with the speech
pronunciation variations.

In this paper, we are not using the recorded data to train
the articulatory model, because the data collection may result in
unnatural pronunciation and there are also many other problems
[31], e.g., the synchronization among data streams, speaker nor-
malization, data calibration, and data smoothing.

With the help of linguists of low-resource languages ad-
dressed in this study, each consonant is represented as place-
ment attributes (K, C, T, P, Q) and/or manner attributes (h, v,
n, R, L, W, Y, S, H), while vowels are described by other sev-
eral attributes (A, r, f, c, t, h, n) as shown in Table 1. We define
all articulatory attributes in a context-independent way. Inspired
by [21, 22, 32, 33], we use a much easier method mapping the
text to articulatory attributes using the table-lookup method as
shown in Figure 1 and Figure 2.

2.3. Character-to-attribute Mapping

We take following steps to encode texts to universal articulatory
representations (Text2Articulation in Figure 1).

Firstly, the texts are segmented into characters. The spaces
between neighboring words are preserved using a word bound-
ary mark (“<boundary>” in Figure 1).

To make the char-to-attribute table (as shown in Figure 2)
with one-to-one mapping within the same language, each char-
acter has a unique representation by adding single or multiple
“+” to the end of the duplicated representations. We design
shorter articulatory representations according to the unigram
frequencies. Moreover, the other un-pronounced tokens such
as punctuation marks are not considered in this processing.

For recovering from the outputs of articulatory represen-
tations to original texts (Articulation2Text in Figure 1) when
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Figure 2: Examples of converting multilingual characters to articulatory representations (assumed one-to-one mapping within the same
language).

testing, we refer to the char-to-attribute mapping table (as
shown in Figure 2), and the word boundary marks detected from
the recognition output.

3. Experiment Evaluations
3.1. Data Description

In this paper, we focus on four low-resourced South/Southeast
Asian languages (Myanmar, Khmer, Sinhalese and Nepalese)
as shown in Table 2. Unlike the widely used languages (e.g.,
English), these languages are not thoroughly studied for speech
recognition. The Myanmar and Khmer data sets are the same
with our previous work [34, 35]. The data sets of the other
two languages are selected from Google’s opensource databases
1. These four datasets are all from smartphone input in tourist
scenarios. The quality of the Khmer speech data is the best.

For each language, we select speech data from two hours to
five hours as the test set and the rest is used for training.

Table 2: Multilingual Datasets

Language Dataset Hours
Myanmar (MY) Training 54.4

Testing 2.3
Khmer (KH) Training 102.2

Testing 5.5
Sinhalese (SI) Training 27.9

Testing 2.7
Nepalese (NE) Training 38.7

Testing 2.7

We used 120-dim filterbank features (40-dim static +∆
+∆∆), which were mean and variance normalized per speaker,
and four frames were spliced (four left, one current and zero
right). Speed-perturbation [36] was not used to save training
time.

1http://www.openslr.org/52/ and http://www.openslr.org/54/

3.2. Model Training

We used the implementation of the Transformer-based neural
machine translation (NMT-Transformer) [26] in tensor2tensor 2

for all our experiments. The training and testing settings listed
in Table 3 are similar to those in [37].

Table 3: Major Experimental Settings

Model structure
Attention-heads 8 Decoder-blocks 6
Hidden-units 512 Residual-drop 0.3
Encoder-blocks 6 Attention-drop 0.0
Training settings
Max-length 5000 GPUs (K40m) 4
Tokens/batch 10000 Warmup-steps 12000
Epochs 30 Steps 300000
Label-smooth 0.1 Optimizer Adam
Testing settings
Ave. chkpoints last 20 Batch-size 100
Length-penalty 0.6 Beam-size 13
Max-length 200 GPUs (K40m) 4

When training single-language models for reference, we
find using the well-trained model as seed model to initialize
the low-resourced speech data is very useful. However, this
initialization strategy does not work when training the multi-
lingual model. In this paper, we use a Mandarin transformer-
based model (eight head-attention, six encoder-blocks and six
decoder-blocks with 512 nodes) trained from 178 hours of
speech data selected from AIShell dataset [38] with the CER
of 9.0% to initialize the single-language models.

When training a multilingual model, we add the particular
words <Language Mark> (e.g., <MY>, <KH>, <SI> and
<NE>) to the beginning of the labels for every utterance. The
training labels are organized as “<S> <Language Mark> la-
bels </S>”.

2https://github.com/tensorflow/tensor2tensor
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3.3. Multilingual Speech Recognition Evaluation

To evaluate our proposed method, we trained a set of E2E
speech recognition systems with word-based (w), character-
based (c), globalphone (p) and (articulatory) attribute-based la-
bels (a). Both single-language models (separate-w, c, p, a) and
multilingal models (multilingual-w, c, p, a) are compared.

Table 4: ASR performance (CER%) of acoustic models with
different settings (“w” means word-based model, “c” means
character-based model, “p” means globalphone-based model
and “a” means articulatory-attribute-based model)

Multilingual Evaluation Sets
MY KH SI NE

separate models (w) MY 23.9 / / /
KH / 1.3 / /

SI / / 23.7 /
NE / / / 26.1

separate models (c) MY 49.2 / / /
KH / 5.0 / /

SI / / 22.1 /
NE / / / 13.8

separate models (p) MY 23.4 86.4 90.6 93.4
KH 85.4 2.2 90.5 87.3

SI 83.6 85.7 21.0 71.1
NE 83.7 78.7 64.5 14.2

separate models (a) MY 23.2 86.0 89.7 92.1
KH 86.3 2.2 95.4 95.3

SI 84.0 85.0 22.8 70.8
NE 83.9 78.6 64.1 16.3

multi-lingual model (w) 23.7 1.5 34.2 36.7
multi-lingual model (c) 26.6 0.7 14.5 10.8
multi-lingual model (p) 28.1 2.0 13.3 10.3
multi-lingual model (a) 21.6 2.4 13.6 10.7

The results compared to the lowest result without statistical significance
(from two-tailed t-test at significant level of p-value < 0.05) are shown
in bold fonts.

From the results in Table 4, we observe that single-
language models trained with globalphone and attribute-based
labels (separate-p, a) are not good for recognizing speech of
other languages (shown in small font size). We also find
that training with the attribute-based labels (separate-a) for
the single-language model does not provide the better perfor-
mance, compared to character-based (separate-c), word-based
(separate-w) and globalphone-based models (separate-p).

However, the attribute-based model with multilingual train-
ing (multilingual-a) can significantly outperform other mod-
els. The multilingual training can make use of more data from
other languages, especially when there is not enough data for a
specific language. This is very similar to the transfer learning
mechanism. For the globalphone-based multilingual training
(multilingual-p), since some phones are missing in a specific
language, the knowledge of these phones cannot be shared be-
tween languages. For example, some phones of Myanmar do
not exist in Khmer, Sinhalese, Nepalese, the globalphone-based
multilingual training (multilingual-p) does not work well for
Myanmar. Our proposed universal articulatory representation
can share knowledge between different languages more effec-
tively.

The other advantage of our proposed method can be found
in Table 5. The universal articulatory attributes provide more

Table 5: Number of Different Modeling Units (“w” means word,
“c” means character, “p” means globalphone, “a” means ar-
ticulatory attribute)

Language #w→ #c→ #p→ #a
Myanmar (MY) 17,951→ 67→ 182→ 23
Khmer (KH) 3,129→ 79→ 182→ 23
Sinhalese (SI) 24,803→ 153→ 182→ 23
Nepalese (NE) 25,929→ 100→ 182→ 23
Multilingual (MY+KH+SI+NE) 71,812→ 365→ 182→ 23

compact representations compared to characters, words, and
globalphones. No matter how many languages are dealt with,
the number of classes is always very limited.

For an objective evaluation, we also notice in Table 4 that
Khmer is the only language that has slight performance degra-
dation by using the proposed method. It has high-quality data
over 100 hours and a well-tuned baseline. This result indicates
that it is more appropriate to use the proposed multilingual train-
ing with universal attributes for the low-resource languages.

The proposed method can also be easily extended to other
widely used languages (e.g., English and Chinese) by using
pronuncication dictionaries. We first convert the words to
phoneme sequences with dis-ambiguous marks to distinguish
the homonyms (e.g., write → /r ai t @1/ and right → /r ai t
@2/), and then map the phonemes to articulatory attribute rep-
resentations using the phone-to-attribute table proposed in this
paper.

4. Conclusions and Future Work
In this paper, we investigate an efficient method of encod-
ing multilingual transcriptions for training E2E ASR sys-
tems. Compared with traditional multilingual modeling meth-
ods, we directly build a single acoustic-articulatory within the
transformer-based E2E framework for multilingual ASR. The
speech recognition results of our proposed model significantly
outperform the traditional word-based and character-based E2E
models. Moreover, universal articulatory attributes provide
more compact representations than characters and words. In
the future, we will test our method on more languages from all
of the world.
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