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Abstract

Connectionist temporal classification (CTC) has shown great
potential in end-to-end (E2E) acoustic modeling. The current
state-of-the-art architecture for a CTC-based E2E model
is based on a deep bidirectional long short-term memory
(BLSTM) network that provides frame-wise outputs estimated
from both forward and backward directions (BLSTM-CTC).
Since this architecture can lead to a serious time latency
problem in decoding, it cannot be applied to real-time speech
recognition tasks. Considering that the CTC label of one
current frame can only be affected by a few neighboring
frames, we argue that using BLSTM traversing on a whole
utterance from both directions is not necessary. In this paper,
we use a very deep residual time-delay (VResTD) network
for CTC-based E2E acoustic modeling (VResTD-CTC). The
VResTD network provides frame-wise outputs with local
bidirectional information without needing to wait for the
whole utterance. Speech recognition experiments on Corpus
of Spontaneous Japanese were carried out to test our proposed
VResTD-CTC and the state-of-the-art BLSTM-CTC model.
Comparable performance was obtained while the proposed
VResTD-CTC does not suffer from the decoding time latency
problem.

Index Terms: Speech recognition, acoustic model, connection-
ist temporal classification (CTC), very deep residual network

1. Introduction

The connectionist temporal classification (CTC) framework [1]
is an effective end-to-end (E2E) framework [2] for speech
recognition. The CTC modeling technique greatly simplifies
the acoustic modeling pipelines. No frame-level labels or ini-
tial GMM-HMM systems are needed anymore. Built on top of
the deep bidirectional long short-term memory (BLSTM) recur-
rent neural networks, CTC models achieve state-of-the-art per-
formance on speech recognition tasks [3]. However, BLSTM
traverses a whole utterance from both directions to estimate
the frame-wise outputs. This leads to serious time latency and
makes the model impractical for online speech recognition (es-
pecially on our SprinTra WFST decoder [4]).

The BLSTM model can be improved using a context-
sensitive-chunk BLSTM (CSC-BLSTM) [5]. This method
chops a whole sentence into several overlapping chunks and
controls the delay time by appending several contextual chunks
(both past and future). A latency-controlled BLSTM (LC-
BLSTM) [6] accelerates the training and decoding speed by op-
timizing the calculation of each chunk. For the same purpose,
Xue et al. [7] proposed other structures: forward approxima-
tion and a backward simple recurrent neural network BLSTM
(FABSR-BLSTM).

More direct methods focus on replacing the BLSTM net-
work with other no-latency structures. Using a unidirectional
LSTM model with a similar parameter size [8] or a state-of-the-
art Grid LSTM [9] instead is a very effective strategy. Feed-
forward sequential memory neural networks (FSMN) [10], a
time-delay neural network (TDNN) [11, 12], a residual memory
network (RMN) [13], and a layer-wise context expansion and
attention (LACEA) network [14] can learn bidirectional long-
term dependency without recurrent feedback and thus have very
good potential for integration with CTC training.

Other methods predict the future context before recognition
using recurrent neural networks [15] or encoder-decoder neural
networks enhanced with attention mechanism [16, 17]. These
methods show a promising future research direction.

When calculating the frame-level CTC label output, the
predicted label of a frame is mostly affected by its neighboring
short frame trunks (coarticulation effect [18]). For this reason,
processing the whole utterance using the BLSTM-CTC is not
necessary. In this paper, we propose a very deep residual time-
delay CTC neural network (VResTD-CTC). In our method, a
very deep residual structure is used to enhance the conventional
TDNN during CTC training.

The rest of this paper is organized as follows. Section2
briefly reviews related work. Section 3 describes our proposed
model’s structure. Section 4 presents experiments. Conclusions
and future works are given in Section 5.

2. Related Work
2.1. Connectionist Temporal Classification (CTC)

The CTC training criterion is intensively used in E2E [2] acous-
tic modeling, which focuses on solving the sequence labeling
problem between variable-length speech frame inputs and label
outputs (phone character, syllable, etc.).

Output based on a CTC-trained network is a frame-level
token sequence called a path (denoted as p). With multiple hy-
potheses, many paths are generated where a blank symbol (¢
as no label output) is included and inserted between CTC la-
bels. These paths are mapped into label sequences by removing
the massive blank symbols detected during the decoding and the
duplication of identical labels. One label sequence Z is mapped
to multiple CTC label paths (denoted as Path(Z)). The likeli-
hood of Z can be evaluated as a sum of the probabilities of its
corresponding CTC paths:

P(Z|X)= >

pEPath(Z)

P(p|X), M

where X is the speech frame sequence in the whole utter-
ance and p is a CTC path corresponding to label sequence Z.
By differentiating Eq. 1, we can backpropagate training errors
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and further update the network parameters based on a forward-
backward procedure [1]. The weighted finite state transducer
(WEST) [19, 3] is used for decoding with CTC models.

LF-MMI training [20] has been applied on various acous-
tic models, and it has shown promising results [21]. However,
these models need frame-level labels for training, which are of-
ten estimated using GMM-HMM system, and thus they are not
E2E systems.

2.2. Modeling Temporal Context Information in Feedfor-
ward Neural Network without Recurrent Feedback

As mentioned in Section 1, TDNN [22] and its various forms
[12, 20] can learn long-term dependency without using recur-
rent feedback and thus might be integrated with CTC training
as an alternative to BLSTM.

A feedforward sequential memory network (FSMN) [10,
16], which can also learn long-term dependency in sequential
data without recurrent structure, has memory blocks (usually
global vectors) to encode the activations for each hidden layer.
Since it also uses a time-delay operation to capture the signal at
a certain time step, we can consider it a special TDNN.

2.3. From Deep to Very Deep Structure

In the speech recognition field, the very deep residual networks
also achieve significant performance [23, 24, 25, 26, 13, 14]
over conventional DNNs. The residual structure [27] is a sim-
plified version of the highway structure [28, 6]. The signals can
bypass the transformation across multiple layers from residual
connections. We can train much deeper time-delay networks
equipped with residual connections in a similar way.

3. Proposed CTC Model based on Very
Deep Residual Time-Delay Neural Network

In this section, we introduce our proposed VResTD-CTC,
which is a very deep residual neural network that enhances the
conventional TDNN in CTC training.

Figurel is the general architecture of the proposed
VResTD-CTC. The network has two kinds of residual blocks
stacked together:

1. Conventional residual blocks (ResBlock): Each Res-
Block has several layers connected with activations and a
residual-skip !. A time-delay operation is not used. The
stacked ResBlocks are located close to the input layer
and transform the speech feature to a higher level repre-
sentation (Table 2).

Time-delay residual blocks (TDResBlock): We in-
tegrate a time-delay operation (bidirectional)® to the
TDResBlock. Two global memory blocks (past and fu-
ture) encode the output signal after every time-delay op-
eration. The residual connection passes the frame of the
current time-step across five layers (Table 2).

In the VResTD-CTC network, the entire input sequence
of the [-th time-delay hidden layer can be represented as H*

= (h%, hb, RS, ..., k). Any Al has the following processing

I'The residual-skips use linear projections for dimensional matching
(Table 2).

>Triplet {—t;, 0, +t;} denotes the frames at three time-steps (—t;,
0 and +t¢;), which have been subsampled from time-steps ranging from
—t; to +t;, following [12]. —, 4, and O indicate the past, future, and
current time-steps.
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Figure 1: General network architecture of VResTD-CTC:
Memory block encodes output signal after every time-delay and
subsampling operation by default

pipeline:
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First, it is linearly transformed by standard weight matrix
W' and bias b’ for layer I:

hi = W'(h) + 1, @)

Then a time-delay operation captures a (N} +1+N2)

length context H} a}t the I-th time-delay hidden layer for ht.
H] (hl N SR Lk With subsampling, H} ~

(hl Ni> R, ht+Nl) NI and NY are the window sizes of the

past and future context (NI+1+NL < 1. Following [13], we
use symmetric context window (NI = Nb). We also slightly
tuned the past and future contexts. No benefit was identified
(Sec. 4.3.2).

The past context (ht N,) and future context (ht+Nl) are

t+Nl)

encoded with transformatlons individually and summed up with
current feature (ht) before activation function.

l
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dhy OF_yy +H
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where the encoding weight for the past context is denoted as

ai\,l and the encoding weight for the future context is denoted
1
as ¢ Following VFSMN [10, 16], we use vectors instead

NL*
of scaiers here. © is element-wise multiplication. Our experi-
ments (Sec. 4.3.2) show that the performance would drop dra-
matically without memory vectors. We also tuned the number
of the vectors and used two vectors.

the I-th layer locates inside of a TDResBlock:
ReLU (é})

the I-th layer is the output layer of a TDResBlock:
ReLU (e} + hyc¥®uaty,

I+1
o

“




where h;¢*44al is the t-th input frame to the current TDRes-

Block. Suppose the block has 5 layers and the output layer is
I-th layer, hye*‘*e! is actually hi~*.

4. Experiments
4.1. Task and Data Descriptions

In this paper, we tested our proposed method on the Corpus
of Spontaneous Japanese (CSJ) [29] and used 240-hour lec-
ture recordings as the training set (CSJ-Train) [30, 31]. We
used three official evaluation sets (CSJ-Eval01, CSJ-Eval02,
and CSJ-Eval03), each of which contained ten lecture record-
ings [31], to evaluate the speech recognition results. Ten lec-
ture recordings were chosen for validation (CSJ-Dev) dur-
ing training. We also selected 27.6-hour training data in CSJ
(CSJ-Traingy,,y) to train the seed models for warm-start initial-
ization [32] and tuning the parameters.

Table 1: Data Sets of CSJ

#Lectures | Hours
Training set | CSJ-Traingman 155 27.6
CSJ-Train 957 240
Development set (CSJ-Dev) 10 2.0
CSJ-Eval01 10 2.0
Testing set CSJ-Eval(2 10 2.1
CSJ-Eval03 10 1.4

We trained the baseline models using CSJ-Train. To start
the first baseline model (DNN-HMM-CE), we first trained a
GMM-HMM model and then a DNN model with five hid-
den layers, each of which is composed of 2048 hidden nodes.
The output layer has about 8500 nodes that correspond to the
tied-triphone states of the GMM-HMM model. We used 72-
dim filter-bank features (24-dim static +A +AA), which are
mean and variance normalized per speaker, and 11 frames were
spliced (5 left, current, 5 right). The DNN model was trained
using a standard stochastic gradient descent (SGD) based on the
cross-entropy (CE) loss criterion. All were implemented using
the Kaldi toolkit (nnetl) [33, 30].

We trained the baseline CTC models using the EESEN
toolkit [3]. The BLSTM-CTC baseline model (BLSTM-CTC)
was trained with the same 72-dimensional filter-bank features
(24-dim static +A +AA) without splicing. The BLSTM net-
work has five hidden layers, each of which is composed of
320 nodes. We used 28 Japanese context-independent phones
(CI-phones) + blank (¢) as acoustic units for the CTC training.
The third baseline model is a unidirectional LSTM CTC model
(ULSTM-CTC) with the same parameter size as the BLSTM-
CTC (five hidden layers, each composed of 640 nodes). The
right context of the feature is eight frames, and the left context
is a zero frame. The subsampling number was set to three.

For decoding, we trained a 4-gram word language model
(WLM) from the transcription of 591-hours of CSJ training
data. The WLM'’s vocabulary size was 98K. We compiled
WEFST-based decoding graphs for these models. The CTC-
based models were decoded on EESEN decoder [3, 34] with
a prior estimated from the training data. The performances are
shown in Section 4.4.

4.2. Settings for Training Proposed Network

We trained the proposed CTC models with CNTK [35]. Similar
to BLSTM-CTC, its features are a 72-dim non-spliced filter-
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bank (24-dim static +A +AA). The labels are the same CI-
phone label of the two CTC baselines.

We first trained seed models with 27.6-hours of
CSJ-Traingnan with the CTC loss criterion using a single
GPU. Training the seed model costs two days and the WER%
on CSJ-Eval01 is 19.3%. Then we used this seed model to train
the CTC model using 240-hour training data. The FsAdaGrad
algorithm (an implementation of Adam [36]) was used during
CTC training. To quicken training with the 240-hour training
data (CSJ-Train), we used the block-wise model update filtering
(BMUF) distributed training algorithm [37] on 4 Tesla K40m
GPUs. The initial learning rate for each frame was 0.00001
and automatically adjusted using validation on CSJ-Dev. The
minibatch size was 2048. The number of parallel sequences in
the same minibatch was 16. The maximum epoch number was
25. The training takes around a week and finished at the 13th
epoch. We used the model from the 5th epoch for evaluation.

4.3. Model Structure Tuning

4.3.1. Structure of proposed model

‘We built a set of prototype networks and selected a best 26-layer
structure using an evaluation set (CSJ-Dev) shown in Table 2.

Table 2: Network structure: all layers are connected with ReLU
activations, and past and future memories are stored in two
global [1024x 1] vectors.

Component Structure #Para.
’ (ordered in seq.) ‘ (26 FC layers) ‘ (35.5M)
Input 72-dim filter-bank features
’ ‘ (24-dim static+t A+AA) ‘ ‘
ResBlock 1 3 FC layers Residual-skip 8.3M
[72x2048] [72<2048]
[2048 % 2048]
[2048 x 2048]
ResBlock 2 3 FC layers Residual-skip 4.5M
[2048 % 128] [2048 % 2048]
[128x 128]
[128 x2048]
ResBlock 3 3 FC layers Residual-skip 2.6M
[2048 % 128] [2048x 1024]
[128x 128]
[128 x 1024]
TDResBlock 1 5 Time-delay layers | Residual-skip 6.0M
[1024x1024] x5 [1024x 1024]
TDResBlock 2 5 Time-delay layers | Residual-skip 6.0M
[1024x 1024]x5 [1024 X 1024]
TDResBlock 3 5 Time-delay layers | Residual-skip 6.0M
[1024x1024]x5 [1024 % 1024]
Fully-connect 2 FC layers 2.IM
[1024x2048]
[2048 x 29]
Output

softmax
(28 CI-phones+¢, see Sec.4.1)

The model, which is only constructed with FC layers con-
nected with ReLU activations, has three ResBlocks (each with
three FC layers) and three TDResBlocks (each with five FC lay-
ers and five time-delay operations). The time-delay operations
are all enhanced with two global memory blocks.

4.3.2. Number of time-delay layers

The local bidirectional contexts are captured by stacking the
TDResBlocks. Following [13], the context-windows of the
stacking time-delay operations are shown in Table 3. The lo-
cal bidirectional context structure is implicitly encoded in the
network architecture by stacking the time-delay network struc-
ture. The context’s length can be exponentially extended by the



depth of the stacking layers. The width of the captured context
is % + 1, where [ is the total number (15) of the FC layers
in these TDResBlocks.

We trained VResTD-CTC models where the number of
stacked time-delay layers ranged from 10 to 20. We also slightly
tuned the past and future contexts. No benefit was identified
(Table 3). Exhaustively searching for the optimized structure is

not the focus of this paper.

Table 3: ASR performance (WER% on CSJ-Dev) by tuning
stacked time-delay operations

Symmetric Asymmetric
layer 1: —1,0,+1 —4,0,+1 —1,0,+4
layer 2: —2,0, 42 —5,0,+2 —2,0,+5
layer 3: —3,0,+3 —6,0,+3 —-3,0,+6
layer I: —1,0, 41 —(14+3),0,+1 | =1,0,+(+ 3)
(I=10) | (=15) ‘ (1=20) (I=15) (I=15)
13.1 11.7 12.7 12.7 13.7

4.3.3. Number of vectors for memory encoding

We tuned the number of vectors for memory encoding purposes,
as shown in Table 4.

Table 4: ASR performance (WER% on CSJ-Dev) of VResTD-
CTC models with global or local memory encoding

Network Num. MemVecs
w/o 2 6 10 30
WER% 17.6 | 11.7 | 13.2 | 12.0 | 13.8

Our experiments showed that the performance dropped dra-
matically without memory vectors. We trained VResTD-CTC
models where the number of memory encoding vectors ranged
from 6 to 30, but they cannot outperform the model with two
vectors. In our experiment with full training set, two vectors
and ten vectors can achieve the same performance. We choose
the simplier structure.

4.4. Performance of Speech Recognition

In this subsection, we compared the performance of the pro-
posed acoustic models (VResTD-CTC) on the three CSJ
evaluation sets with the baseline systems: DNN-HMM-CE,
BLSTM-CTC, and ULSTM-CTC, see Section4.1. We de-
coded the CTC model by feeding the network’s scaled log-
likelihood output to the EESEN decoder [3]. The decoding set-
ting is the same with BLSTM-CTC and ULSTM-CTC.

Table 5: ASR performance (WER%) of acoustic models

Network WER%
(CSJ 240 hours) Eval 01 | Eval02 | Eval 03 Ave.
DNN-HMM-CE 14.4 11.8 15.6 13.9
BLSTM-CTC [34] 14.4 11.9 15.1 13.8
ULSTM-CTC 15.9 13.1 16.6 15.2

[ VResTD-CTC H 15.1 [ 12.0 [ 14.5 H 13.9 ]

As shown in Table 5, DNN-HMM-CE and BLSTM-CTC
have similar performances. Compared to these two baselines,
the word error rate (WER%) of VResTD-CTC is about 0.7%
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higher on CSJ-EvalO1. However its performance can still im-
prove on CSJ-Eval02 and CSJ-Eval03 and has comparable av-
eraged performances on these three evaluation sets. Moreover,
it outperformed ULSTM-CTC on all three evaluation sets. Its
structure difference may explain such performance gaps be-
tween TDNN- (including our model) and BLSTM-based mod-
els. Every TDNN layer is only fed with the past and future con-
texts from its lower layers, while BLSTM can also get feedback
from its current layer. Our model still has room for improve-
ment.

Concerning the decoding speed, we tested the real-time fac-
tors (RTFs) of the above models. The decoding is applied on the
same workstation without sharing with other jobs and the feed-
forward pass and decoding are all calculated into RTFs. Since
BLSTM-CTC cannot be used in the Sprintra WFST decoder
[4], we didn’t test its speed. Compared with the DNN-HMM-
CE model (RTF=0.70, HCLG decoding graph), the speed of
proposed VResTD-CTC is 0.20 on RTF with TLG decoding
graph, which matches the 3x faster results reported in [3]. It is
slightly slower than the ULSTM-CTC model (RTF=0.15) due
to the much deeper layers.

Parameter size is the another problem of our proposed
model. Although compared to DNN-HMM-CE (38M), the pro-
posed 26-layer model (36M) is not very large. But it remains
over three times larger than BLSTM-CTC (11M) and ULSTM-
CTC (10M). To compress the model, we applied singular value
decomposition (SVD)-based parameter compress to all of the
FC-layers [38, 39] and then fine-tuned with CSJ-Traingman. Em-
pirical evaluations are shown in Table 6. By reducing half of the
size of the original very deep model, we have the least perfor-
mance loss: (1.0% of WER%). This loss can be compensated
by using [34, 40] or retraining with full training set.

Table 6: ASR performance (Average WER% on CSJ-
Eval01/Eval02/Eval03) of acoustic models with different neural
network structures

threshold of SVD
1.0 (Full model) 0.3 0.5 0.7
Para. Size (approx.) 36M 12M | 18M | 25M
WER% (Ave.) 13.9 157 | 149 | 159

5. Conclusion and Future Work

In this paper, we propose a method that focuses on replacing
the BLSTM network with a very deep residual time-delay CTC
neural network (VResTD-CTC). It can learn bidirectional long-
term dependency without using recurrent feedback and be in-
tegrated with CTC training to achieve comparable performance
with DNN-HMM-CE and BLSTM-CTC models. In the future,
we will further improve this deep structure.
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