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ABSTRACT

It is very important to exploit abundant unlabeled speech for
improving the acoustic model training in automatic speech
recognition (ASR). Semi-supervised training methods incor-
porate unlabeled data in addition to labeled data to enhance
the model training, but it encounters the error-prone label
problem. The ensemble training scheme trains a set of mod-
els and combines them to make the model more general and
robust, but it has not been applied to the unlabeled data. In
this work, we propose an effective semi-supervised training
of deep neural network (DNN) acoustic models by incorpo-
rating the diversity among the ensemble of models. The resul-
tant model improved the performance in the lecture transcrip-
tion task. Moreover, the proposed method has also shown a
potential for DNN adaptation.

Index Terms— Speech recogntion, Acoustic model,
DNN, Semi-supervised training

1. INTRODUCTION

For many automatic speech recogntion (ASR) tasks, there are
usually limited amount of labeled speech for training acoustic
models but often abundant unlabeled speech which requires
much human efforts and expertise to label it. It is important to
utilize the unlabeled speech for improving the acoustic model.
In this work, we focus on effective training of deep neural
network (DNN) acoustic models with limited labeled speech
and abundant unlabeled speech.

Semi-supervised learning methods [1] exploit unlabeled
data in addition to labeled data, where no human intervention
is assumed, thus it has become an important topic. Typically,
a seed model is trained with the labeled data to automatically
transcribe the unlabeled data. In this setting, multiple seed
models can be used, and their hypotheses are combined to
improve the transcription accuracy [2].

The ensemble training scheme trains a set of models with
the same data set and combines them or their prediction re-
sults during testing [3]. By incorporating diversity (=predic-
tion differences) among the models during training, the re-
sultant model will be generalized and robust [4]. However,

conventional ensemble training has not been used to utilize
the unlabeled data.

In this paper, we propose a generalized ensemble train-
ing method using both labeled and unlabeled data. Ensemble
training can enhance the semi-supervised training by regard-
ing the inconsistency of labels among different seed models as
diversity to be leveraged. An ensemble of models is trained in
parallel using diverse labels for unlabeled data. Together with
the standard cross-entropy, the KL divergence between these
models in ensemble is incorporated into the training objective
function. The proposed method is evaluated on the lecture
transcription task and the DNN adaptation task.

The rest of this paper is organized as follows. Section 2
formulates the proposed semi-supervised ensemble train-
ing. Section 3 describes its implementation. Section 4 and
Section 5 presents evaluations of the proposed method. Con-
clusions are given in Section 6.

2. SEMI-SUPERVISED ENSEMBLE MODEL
TRAINING

2.1. Semi-supervised Training and Ensemble Training

In the most commonly-used semi-supervised training of DNN
acoustic model [2, 5, 6, 7, 8, 9], a seed model is trained with
the labeled data to automatically transcribe the unlabeled
data. In this setting, the ASR result is essentially error-prone
and its quality significantly affects the overall performance.
One of the solutions is to set up multiple seed models, so that
a multi-system combination can improve the transcription
accuracy [2].

In addition, data selection is also adopted, because the
DNN training is sensitive to the errors in the label. The
data selection can be conducted in different levels. The most
widely-used method is the utterance-level selection, which
sorts the utterances by an utterance-level confidence measure
score (CMS) and selects a certain percentage of top utterances
for model training [5].

When we have a frame-level CMS, it is possible to per-
form frame-level data selection (frame dropping [7]) in the
fine-tuning step of DNN over frame-level mini-batches. Al-
ternatively, by viewing the high-confidence data and the low-

5270978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



confidence data as different resources, a multi-task training
architecture inspired from multi-lingual modeling [10, 11, 12,
13, 14, 15] can be applied for semi-supervised training. How-
ever, these filtering methods cannot entirely solve the prob-
lem of errors in the label, and they will significantly reduce
the amount of usable training data.

The ensemble training method can effectively improve the
performance by training a set of individual models on the
same data set, and either combining the models or their pre-
diction results during testing [3]. Diversity is an important
factor in ensemble learning. It represents the prediction dif-
ferences between any pair of component models in the en-
semble of models. It can be measured by either Euclidean
distances, KL divergence, or some other metrics. By incorpo-
rating diversity among models during training, the resultant
model becomes more general and robust [4].

Deng et al. [16] developed the linear and log-linear
stacking methods for ensemble learning with class posterior
probabilities computed by the convolutional, recurrent, and
fully-connected deep neural networks. Experimental results
demonstrated a significant increase in phone recognition ac-
curacy. Recently, Zhang et al. [17] trained an ensemble of
differently randomly initialized networks by introducing a
penalty term of KL divergence between each individual DNN
output and their average output. The method shows good re-
sults for a low-resource speech recogntion task and the TED
spoken lecture transcription task. According to [18, 19], the
prediction error for labeled data in the objective function can
be regularized by the unlabeled data. We introduce diver-
sity among models through the use of different ASR-based
labels for unlabeled training data. On the other hand, individ-
ual models in the ensemble are encouraged by the objective
function to get closer to the ensemble average in the training
time as in [17], in order to stabilize the training. There is
past work showing that it is possible to train a small DNN
model to learn the predictions of a large DNN model [20] or
RNN model [21] by minimizing the KL divergence between
the output distributions on unlabeled data. Our work can be
regarded as an extension by using a set of models to train a
single DNN model.

2.2. Proposed Method

We propose a generalized ensemble training method using
both labeled and unlabeled data as shown in Fig. 1.

We have two data sets L and U as follows: L={(x1, y1),
(x2, y2), · · · , (x|L|, y|L|)} is the labeled data set, where |L|
is the number of labeled samples. For any (xi, yi) ∈ L,
(i = 1, 2, · · · , |L|), yi is the unique label for the feature vec-
tor xi. Here yi is represented with an N -dimentional vec-
tor yi = (yi1, · · · , yiN )T , where N is the the number of
classes (senones) and only one element is 1 and others are
0. U={x′

1, x
′

2, · · · , x′

|U |} is the unlabeled training data set,
where |U | is the number of unlabeled samples. For any fea-

ture vector x
′

j ∈ U , (j = 1, 2, · · · , |U |), we have M labels
(ŷ1j , ŷ2j , · · · , ŷMj) generated by M different seed ASR sys-
tems trained using L.

Fig. 1: Flow-chart of the proposed method.

Then we train a model ensemble θ = (θ1, θ2, · · · , θM )
with the complete data set L ∪ U . Each of θm is the pa-
rameters of a DNN model (m = 1, · · · ,M), and it can be
regarded as a non-linear function mapping the input feature
vector xi to the senone class posterior probabilities s(xi; θm).
s(xi; θm) , (P (s1|xi; θm), · · · , P (sN |xi; θm))T is the pos-
terior probability distribution over all senone classes given
feature xi and model θm (m = 1, · · · ,M).

Unlike using differently initialized DNN models in [17],
the model diversities are derived from the diverse labels of
U . In addition, these model parameters (both weight matrices
and bias vectors) are periodically averaged,

θ =
1

M

M∑
m=1

θm. (1)

This averaged model is used for a new start of parallel training
of each model.

We try to find a set of parameters to minimize the objec-
tive function,

θ∗ = argmin
θ

V (θ, L, U), (2)

which is defined as:

V (θ, L, U) = Ve(θ, L) + (1− λ)Ve(θ, U) + λVd(θ, U), (3)

where Ve is defined as the empirical loss measured on the
training set, Vd is defined as the diversity loss measured be-
tween the ensemble classifiers and λ is a tunable tradeoff pa-
rameter. They are further defined as follows:

Ve(θ, L) =

M∑
m=1

{
∑

(xi,yi)∈L

CE(yi, s(xi; θm))}

=
M∑

m=1

{−
∑

(xi,yi)∈L

N∑
n=1

yinlogP (sn|xi; θm)}
, (4)

where Eq. (4) is the standard cross-entropy objective for the
training set L.

Similarly, we have Eq. (5) for unlabeled data set U .

Ve(θ, U) =

M∑
m=1

{
∑
x
′
j∈U

CE(ŷmj , s(x
′
j ; θm))}, (5)
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where ŷmj is the label of feature x
′

j automatically generated
by the m-th seed ASR system.

We incorporate the regularization term of divergence be-
tween ensemble models, which would in effect penalize the
inconsistency between the labels of M different systems. In-
stead of directly using the KL divergences or the Euclidean
distances between the pair of component models, we use a
one-sided KL divergence between each model and the aver-
aged model,

Vd(θ, U) =

M∑
m=1

{
∑
x
′
j∈U

KL(s(x
′
j ; θ)||s(x

′
j ; θm))}, (6)

where the θ is the newly averaged model.
Suppose h(x) and g(x) representN -class output distribu-

tions, we have their KL divergence as follows:

KL(h(x)||g(x)) = CE(h(x), g(x))−H(h(x)), (7)

where the KL divergence can be expressed with the cross-
entropy and the self-entropy. Thus, we have

argmin
g(x)

KL(h(x)||g(x)) = argmin
g(x)

CE(h(x), g(x)). (8)

So we rewrite Eq. (6) just using the cross-entropy term in the
objective function.

Vd(θ, U) =

M∑
m=1

{
∑
x
′
j∈U

CE(s(x
′
j ; θ), s(x

′
j ; θm))}. (9)

3. EXPERIMENTAL IMPLEMENTATION

The proposed semi-supervised ensemble DNN model training
is implemented as shown in Fig. 2. It consists of two stages:
diverse label generation stage and ensemble model training
stage.

3.1. Diverse Label Generation Stage

In the proposed method, model diversity is realized by pro-
viding different label sets for unlabeled training data. We first
trainM different seed ASR systems using the labeled data set
L. Then, the ASR systems generate different labels for the un-
labeled data U with decoding and forced alignment. Finally,
M sets of unlabeled data U with different unfaithful label sets
are shuffled into mini-batches with the labeled data set L.

3.2. Ensemble Model Training Stage

The ensemble of models are trained with different labels in
different GPUs. And the model parameters are updated ev-
ery mini-batch in parallel and periodically averaged every ten
mini-batches, then redistributed to different GPUs as a new
start of parallel training. After 15 to 20 epochs of training,
the averaged model is used as the final model. The ensem-
ble training framework is modified from Kaldi toolkit (nnet2)
[22].

Fig. 2: Implementation of the proposed method.
(the solid arrow is data flow, the dashed arrow is model copy)

4. EVALUATION ON LECTURE TRANSCRIPTION

The proposed method is evaluated on the Corpus of Chinese
Lecture Room (CCLR) [23]. All the data sets are listed in
Table 1.

The dictionary consists of 53K lexical entries. A word tri-
gram language model (LM) was built for decoding by using
transcriptions of the training data of CCLR with the LDC cor-
pora and the Phoenix lecture archive. We first build a GMM-
HMM system and then a DNN-HMM system. The GMM sys-
tem uses PLP features. It is trained with the MPE criterion.
In addition, we conduct unsupervised speaker adaptation us-
ing MLLR for each lecture, which is effective for long lecture
speech. The baseline DNN model uses filterbank features.
We use Kaldi toolkit (nnet1) [24] and the training is based
on the CE criterion. For decoding, we use Julius ver.4.3.1
(DNN version) [25] using the state transition probabilities of
the GMM-HMM.

In this paper, we train an ensemble of two models using
the different labels generated from GMM-HMM and DNN
baseline systems. It is also possible to use more seed ASR
systems using different types of DNN and/or different acous-
tic features, but it turned out these two (GMM and baseline
DNN) have the largest diversity (edit distance of 24.3%). This
set is also an economical choice considering the computa-
tional resources. In our previous work [14], we used unla-
beled data of 114.7 hours to enhance the baseline system by
semi-supervised training. We first combine the hypotheses
generated from the two baseline systems (hypothesis com-
bination), and then conduct several data selection methods
(utterance selection, frame dropping, multi-task training)
as explained in Section 2.1. More detail is found in [14].

We tested a variation of weight λ, which controls the two
terms in Eq. (3). ASR performances of the models enhanced
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Table 1: Data Sets of CCLR

#Lectures Hours
Training set (labeled) 184 97.2
Training set (unlabeled) 184 114.7
Development set 12 7.2
Test set 19 11.9

by these methods are evaluated on both of the development
set and the test set. Table 2 shows that our proposed method
(Ensemble) outperforms other semi-supervised methods sig-
nificantly in any values of λ=0.1, · · · , 0.7. The performance
becomes best when λ=0.5. We also notice that the ensemble
training without regularization (λ=0.0) is comparable to the
hypothesis combination method (HC) without data selection.

Table 2: ASR performances (CER%) of different semi-
supervised training methods of DNN

Training sets (Hours) CER%
labeled unlabeled Dev Test

Baseline GMM 97.2 0 24.2 27.5
Baseline DNN 97.2 0 22.7 25.7
Hypo. Combine (HC) 97.2 114.7 21.5 24.4
HC+utterance selection 97.2 71.5 21.3 24.2
HC+frame dropping 97.2 90.4 21.4 24.3
HC+multitask training 97.2 114.7 21.3 24.3
Ensemble (λ=0.0) 97.2 114.7 21.5 24.3
Ensemble (λ=0.1) 97.2 114.7 20.9 23.7
Ensemble (λ=0.3) 97.2 114.7 20.7 23.6
Ensemble (λ=0.5) 97.2 114.7 20.6 23.6
Ensemble (λ=0.7) 97.2 114.7 20.7 23.8

We also train an ensemble of four models using the differ-
ent labels generated from a CNN model and a RNN model
with GMM-HMM and DNN baseline systems. The CNN
(filterbank, 2CNN+4DNN, Dev 21.5%, Test 24.4%) and the
RNN (filterbank, 2LSTM, Dev 22.0%, Test 25.6%) model are
trained from the labeled data of 97.2 hours. We obtained a
slight improvement. CER% is Dev 20.3% and Test 23.2%
when λ=0.5.

5. EVALUATION ON SPEAKER ADAPTATION

Next, we investigate the proposed method in the speaker
adaptation setting. Since the simplest and most effective
speaker adaptation (Conservative retraining) for DNN mod-
els is retraining the DNN over the adaptation data of the
speaker [26], we apply our proposed method to unsupervised
DNN adaptation (Ensemble).

We use the CHiME-3 challenge [27] data set. The train-
ing set is tr05-multi-noisy, which consists of 1600 real noisy

utterances from 4 speakers in 4 noisy environments, and 7138
simulated noisy utterances from the 83 speakers forming the
WSJ0 SI-84 training set in the 4 noisy environments. For test-
ing, we use et05-real-noisy, which consists of 1320 utterances
from 4 different speakers on 4 environments.

A DNN-HMM hybrid system is trained using the 40-
dimension fMLLR transformed feature (MFCC feature trans-
formed using LDA+MLLT before SAT training). The DNN
was trained based on the sMBR criterion. We also trained a
CNN model based on the CE criterion with the 40-dimension
filterbank feature. The edit distance of their recognition re-
sults is 22.6%. CHiME challenge provided only MLE-trained
GMM-HMM model as a baseline, but its accuracy is too low
(WER of 32.9%) for unsupervised adaptation. We applied
our proposed ensemble training method to retrain the base-
line model (sMBR DNN) for each speaker using the test data
and the baseline ASR results. An ensemble of two models
were trained with diverse label sets generated by the baseline
sMBR DNN and CNN models.

We compare our proposed method (Ensemble) to the
baseline and the Conservative retraining method with and
without KL divergence regularization [28]. For each testing
speaker, we retrain the baseline sMBR DNN model with a
fixed learning rate (0.02) [29]. We applied KL divergence
regularization [28] with an weight of 0.1.

In Table 3, the results are significantly improved by the
proposed method (Ensemble) compared with Conservative
retraining. This demonstrates the proposed method is also
effective for unsupervised speaker adaptation.

Table 3: ASR performance (WER%) of DNN adaptation

et05-real-noisy
Baseline DNN (7DNN, sMBR) 22.7
Baseline CNN (1CNN+4DNN) 22.6
Conservative retraining 22.0
Conservative retraining (w/ KLD reg.) 21.7
Ensemble (λ=0.0) 21.8
Ensemble (λ=0.1) 21.5
Ensemble (λ=0.3) 21.1
Ensemble (λ=0.5) 21.5

6. CONCLUSION

We investigate an application of ensemble training to semi-
superviesd training of DNN acoustic models. By incorporat-
ing a diversity term in the objective function, the resultant
model mitigates the inconsistency of the labels and improved
the performance. Moreover, the proposed method also has a
potential for DNN adaptation. For the future planning, we
will investigate effective use of a larger number of models for
ensemble training.
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