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            Abstract  

This paper addresses unsupervised training of DNN acoustic 
model, by exploiting a large amount of unlabeled data with 
CRF-based classifiers. In the proposed scheme, we obtain 

ASR hypotheses by complementary GMM and DNN based 
ASR systems. Then, a set of dedicated classifiers are designed 
and trained to select the better hypothesis and verify the 
selected data.  It is demonstrated that the classifiers can 
effectively filter usable data from unlabeled data for acoustic 
model training. The proposed method achieved significant 
improvement in the ASR accuracy from the baseline system, 
and it outperformed the models trained from the data selected 

based on the confidence measure scores (CMS) and also from 
the simple ROVER-based system combination. 

Index Terms:  speech recognition, acoustic model, 
unsupervised training, lecture transcription 

 

1. Introduction 

While the performance of acoustic model for speech 
recognition depends on the size of the training data, it is very 
costly to prepare accurate and faithful transcripts. We 
investigate an unsupervised training scheme, which takes the 
advantage of a large amount of unlabeled data, particularly for 

the deep neural network (DNN) acoustic model. As described 
in [1][2][3][4][5], the complete procedure of unsupervised 
training with unlabeled data includes pre-processing (e.g. 
speech segmentation, non-speech removal, speaker diarization, 
etc.), automatic transcription generation, and data selection 
before model training. We focus on the automatic transcription 
generation and data selection as the most crucial part of this 
task.  

For data selection, the most commonly used method is 

based on the confidence measure scores (CMS) computed by 
the ASR system [8][9][10][11][12][13]. The word-level CMS 
is averaged over the utterance unit for data selection. When 
tuning the threshold of CMS, there is a trade-off between the 
data increase and the growth of noise in the label. It is not 
straightforward to find the optimal threshold and it is not 
practical to conduct exhaustive searching. Moreover, the 
optimum threshold depends on the available data size. This 

means that we need to tune the threshold every time the data 
size is increased and the ASR system is updated. Instead of 
using CMS, context-dependent state distribution [6] and global 
entropy reduction [7] can also be used for data selection. We 
investigate a discriminative approach that uses dedicated 
classifiers to select usable data for model training. In recent 
years, conditional random fields (CRF) models [18], which 
can combine multiple sources such as acoustic, lexical and 

linguistic features with contextual information, are used for 

confidence estimation [19][20] and a variety of other 
classification tasks, e.g. [24][25][29][30].  

We have applied the scheme to the lightly supervised 
training [26] setting, where closed caption text is available and 

combined with an ASR hypothesis [27]. However, the 
assumption of closed caption text limits the applicability of the 
method. In this work, we extend to the more general 
unsupervised setting. We can leverage the text quality by 
combining hypotheses from a set of complementary ASR 
systems with similar accuracy and enough diversity on 
recognition patterns [14]. Deng et al. [15] demonstrated 
enough diversity exists between GMM and DNN systems. 

Conveniently, we can reuse the GMM-HMM system that is 
produced in the process of the DNN-HMM acoustic model 
training as a complementary system. Conventionally, 
ROVER-based system combination [16] has been used, but it 
is not robust to the small number of complementary systems 
with different distributions of CMS. The hypothesis 
combination can be formulated as a classification problem 
[21][22], but conventionally it is not integrated with 

hypothesis verification. In this study, the problem is solved by 
using a cascade of CRF classifications. In the proposed 
method, the CRF-based classifiers are prepared for two sub-
tasks: selector CRF and verifier CRF. The selector CRF is 
trained to select a correct (or better) hypothesis either from 
GMM-HMM or DNN-HMM on the character/word level. The 
verifier CRF is then used to determine whether the selected 
result is correct or wrong. Data selection for acoustic model 
training is conducted according to the verification result.  

In the remainder of the paper, we first describe the corpus of 

Chinese spoken lectures and the baseline ASR system in 

Section 2. Next, the proposed scheme for unsupervised 

training is formulated in Section 3. Then, the implementation 

of the method and experimental results are presented in 

Section 4. The paper is concluded in Section 5. 

2. Corpus and Baseline ASR System 

2.1. Data Preparation 

We have designed and constructed the Corpus of Chinese 

“Lecture Room” ( 百家講壇 ) [23], which is a popular 

academic lecture program of China Central Television (CCTV) 
Channel 10. Since 2001, a series of lectures have been given 

by prominent figures from a variety of areas. The closed 
caption text is also provided by CCTV and free-download 
from the official website for a part of the lectures.  

For the experimental purpose, we select 58 annotated 
lectures as the training set (CCLR-SV) and 19 annotated 
lectures as the test set (CCLR-TST). Additionally, 12 
annotated lectures are held out as a development set (CCLR-
DEV). Another set of 126 lectures that have closed caption 

texts only are used for lightly supervised training (CCLR-LSV) 
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[27]. The CCLR-USV set is totally unlabeled, and are used for 
additional training in this work. It has 184 lectures (35 multi-
speaker and 149 single-speaker) in total 248 speakers and 
114.7 hours. All these data sets are listed in Table 1.  

 

Table 1 Data sets in CCLR. 

 Data Set #Lectures Duration (hours) 

Train CCLR-SV  58 35.2 

CCLR-LSV 126 62.0 

CCLR-USV 184 114.7 

Dev CCLR-DEV  12 7.2 

Test CCLR-TST  19 11.9 

2.2. Baseline ASR Systems 

The dictionary for ASR consists of 53K lexical entries 
extracted from CCLR-SV together with Hub4 and TDT4. The 
OOV rate on CCLR-TST is 0.368%. The pronunciation entries 
were derived from the CEDICT open dictionary.  

A word trigram language model (LM) was built for 
decoding. We interpolated the faithful annotation of CCLR-SV 
and closed caption texts of CCLR-LSV with related LDC 
corpora (Hub4, TDT, GALE) and the Phoenix lecture archive. 

We adopt 113 phonemes (consonants and 5-tone vowels) as 
the basic HMM unit. We first built GMM-HMM and then 
DNN-HMM systems. The GMM system uses PLP features, 
consisting of 13 cepstral coefficients (including C0), plus their 
first and second derivatives, leading to a 39-dimensional 
feature vector. For each speaker, cepstral mean normalization 
(CMN) and cepstral variance normalization (CVN) are applied 
to the features. The DNN system uses 40-dimensional 
filterbank features plus their first and second derivatives with 

splicing 5 frames on each side of the current frame. It has 1320 
nodes as input, 3000 nodes as output, and 7 hidden layers with 
1024 nodes per layer. Training of DNN consists of the 
unsupervised pre-training step and the supervised fine-tuning 
step. They are implemented with Kaldi toolkit (nnet1) [28]. 
For decoding, we use Julius ver.4.3.1 (DNN version1) using 
the state transition probabilities of the GMM-HMM. This 
baseline system achieved an average Character Error Rate 

(CER) of 24.2% and 27.5% with the MLLR speaker-adapted 
GMM system, and 22.7% and 25.7% with the DNN system for 
CCLR-DEV and CCLR-TST, respectively. 

3. CRF-based Hypothesis Combination and 

Data Selection 

We propose an effective system combination and data 
selection scheme with CRF-based classifiers as shown in 
Figure 1. The flowchart is as follows: 
 

DNN-HMM ROVER
(conventional)

Feature 
Extraction

ASR decoding

GMM-HMM CRF
(proposed)

Unlabeled
data 

Combination

Text
alignment

Data
selection

Train
acoustic
model

Post
processing

 
Fig. 1 Flowchart of proposed method. 
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Available at http://julius.osdn.jp/en_index.php#latest_version 

3.1. Process Flow 

1) Preprocessing and Hypothesis Generation 

For pre-processing, we first conduct speech segmentation to 
the utterance unit based on the BIC (Bayesian Information 
Criterion) method [32] and speaker clustering to remove non-
speech segments and speech from other than the main lecturer 
in CCLR-USV. And then the unlabeled data is decoded by the 
DNN system and the speaker adapted GMM system, 
respectively. 

2) Hypotheses Combination and Verification 

Since different recognition patterns are observed between 
GMM and DNN based recognition hypotheses, we use CRF 
models to combine these diversities with their contextual 

information and determine which hypothesis should be 
selected for acoustic model training. At first, features are 
extracted from pair-wise aligned texts on the character level. 
Note that each Chinese character represents a syllable and has 
a corresponding meaning [35][36]. We adopt the character unit 
in order to avoid the mis-alignment due to different word 
segmentations and OOV problem. Moreover, as the size of 
characters is much smaller than the vocabulary size, we can 

train CRF models more efficiently. Then, a correct (or better) 
hypothesis is selected from complementary hypotheses and 
verified.  

3) Post-processing and Acoustic Model Training 

Data selection for acoustic model training is conducted by 
aggregating the result of the CRF classifications in the 
utterance level. The DNN system is retrained by adding the 
selected data.  

3.2. Category of Alignment Patterns 

We automatically transcribed the CCLR-SV data and made 
a three-way character alignment among these two ASR 
hypotheses by the GMM system and the DNN system and also 
the faithful transcripts (reference). By analyzing the aligned 
character sequence, we can categorize patterns into five 
classes, as shown in Table 2. The insertion and deletion cases 
are handled by using a null token. The definition of the 
category is as follows: 

 C1: the DNN hypothesis is matched with the GMM 

hypothesis and also the correct transcript.  

 C2: although the DNN hypothesis is matched with the 

GMM hypothesis, neither of them is correct.  

 C3, C4 and C5: the DNN hypothesis is different from 

the GMM hypothesis. In C3, neither of them is correct. 

In C4, the DNN hypothesis is correct. In C5, the 

GMM hypothesis is correct. 

Table 2 Category of alignment patterns. 

Category DNN 

hypothesis 

GMM 

hypothesis 

reference 

text 

Percent 

% 

C1 发 √ 发 √ 发 75.2% 

C2 沦 Ⅹ 沦 Ⅹ 论 6.8% 

C3 雪 Ⅹ 学 Ⅹ 发 6.6% 

C4 法 √ 发 Ⅹ 法 7.7% 

C5 雪 Ⅹ 学 √ 学 3.7% 

(√ means matching with reference, Ⅹ means mismatching) 
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3.3. Design of Classifiers 

We use CRF [18] as the classifier for this task. It can model 
the relationship between the features and labels by considering 
sequential dependency of contextual information.  

Our objective is to accept useful data (C1, C4 and C5) and 

remove erroneous data (C2 and C3). We initially tried to 
design a flat classifier and cast the data selection and 
verification problem as a five-class classification problem, but 
it turned to be difficult because of the complex decision and 
the data imbalance. Therefore, we adopt a cascaded approach.  

In the cascaded approach, we design two kinds of binary 
classifiers: selector CRF and verifier CRF. The selector CRF 
(CRF-1) is for selection between the hypotheses, and the 

verifier CRF (CRF-2 and 3) is for verification of the selected 
hypothesis. As described in the previous subsection, C1 and 
C2 are the matching cases between two different ASR 
hypotheses. In these cases, the data selection problem is 
reduced to whether to accept or discard the hypothesis. This is 
done by CRF-2. On the other hand, C3, C4 and C5 are the 
mis-matching cases between these two ASR hypotheses. We 
train a binary classifier (CRF-1) to make a choice between 

these ASR hypotheses. Then, we apply another classifier 
(CRF-3) to verify it. This classifier (CRF-3) should be 
different from the one used for C1 and C2 (CRF-2), because 
different kinds of information from GMM and DNN based 
systems are used. 

The classification is organized by the three binary classifiers 
in a cascaded structure as illustrated in Fig. 2. The binary 
classifiers are focused on specific classification problems, so 

they are easily optimized. This design also mitigates the data 
imbalance problem. In Fig. 2, one classifier is used for 
selection of the hypothesis with highest credibility either from 
the DNN hypothesis or the GMM hypothesis, and the other 
two are used for verification of the selected (or matched) 
hypothesis. To make binary classification in the selector CRF 
(CRF-1), we merge C3 into C5, because we observed the 
recognition accuracy of the DNN hypothesis is higher than 
that of the GMM hypothesis in the samples of C3. Erroneous 

patterns in C3 will be rejected by the verifier-CRF (CRF-3). 

no yes

C1C2

C3,C4,C5 C1,C2

DNN hypo. matches GMM hypo.?

Verifier CRF (CRF2)

Verifier CRF (CRF3)

Discard AcceptSelect GMM

Verifier CRF (CRF3)

C3,C4(C3),C5

C5(C3)

Discard Accept

C4C3

Discard Accept

Selector CRF (CRF1)

Select DNN

 
Fig. 2 Cascaded classification scheme for data selection. 

3.4. Feature Design  

We design the features for CRFs based on two groups: 

ASR-based features and text-based features listed in Table 3.     

The ASR-based features are extracted for word unit, and 

distributed to each character in the word. They are numeric 

features output by the Julius decoder. The text-based features 

are extracted by rescoring and syntactic analysis in the 

character level. 

Because most of the CRF implementations are designed to 

work with symbolic features, we need to convert the numeric 

features (CMS, DUR, WLM, AM, NLW, NRW, DEN, CLM) 
into discrete features. Moreover, for the symbolic features 
(LEX, POS, BO), the contextual information of the current 
unit (character) is also incorporated by adding the features of 
the preceding two characters and the following two characters.  

 
Table 3 Feature design. 

Categorize Features 

ASR-based  

feature 

1. Confidence measure score of current word (CMS) [17]. 

2. Duration of the current word (DUR). 

3. Word trigram LM score (WLM). 

4. Acoustic model score averaged per frame (AM). 

5. Number of words connecting with current word to the 

left side of the lattice (NLW). 

6. Number of words connecting with current word to the 

right side of the lattice (NRW). 

7. Number of words overlapping with current word in the 

lattice (DEN). 

Text-based  

feature 

1. Lexical entry of current character (LEX). 

2. Part-Of-Speech for each character unit (POS)[31]. 

3. 5-gram char LM probability (CLM). 

4. 5-gram char LM back-off behavior (BO). 

 

For the selector CRF (CRF-1) and the verifier CRF (CRF-2), 

features from the GMM hypothesis and the DNN hypothesis 

are concatenated together, and the complementary information 

from both independent ASR systems can help make better 

classification. After a preliminary evaluation of the feature set, 

we adopt the complete feature set for the CRF-1 and CRF-2.  

For the verifier CRF (CRF-3), we add the posterior 

probability output of CRF-1 and re-generate text-based 

features based on the context determined by CRF-1. 

4. Experimental Evaluations 

4.1. Classifier Implementation and Performance 

In our implementation, we used the CRFSuite package2 to 
train classifiers using CCLR-SV: CRF-2, which is trained to 
discriminate C1 vs. C2, CRF-1, which is trained to 
discriminate C3+C5 vs. C4, and CRF-3, which is trained to 
verify the output of CRF-1. 

In the training data set (CCLR-SV), there is serious 

imbalance in training samples between classes. The 

distribution of these patterns in CCLR-SV is shown in Table 2. 

It is observed that 75.2% of them are categorized into C1. 

Other four classes are 6.8% (C2), 6.6% (C3), 7.7% (C4) and 

3.7% (C5), respectively. This distribution will bias the training 

of the classifiers. Thus, we introduce a re-sampling technique. 

Specifically, we discarded part of samples which appear very 

frequently in C1. As a result, the calibrated distributions are as 

follows: C1:60.3%, C2:10.9%, C3+C5:16.6% and C4:12.2%. 

We partition the CCLR-SV data into five segments, and 
derived the training data of CRF-3 using five-fold cross 
validation. In the validation, we trained an individual CRF-1 
for each data partition. The ratio of positive samples (with the 
label “accept”) against negative samples (with the label 

“reject”) is 87.2% versus 12.8%. 
To minimize the information loss in quantization, the 

numeric values are discretized with the method3 described in 
[34]. The same kind of numeric features from the DNN and 
GMM systems can have different quantization levels.  

 
2
 Available at http://www.chokkan.org/software/crfsuite/ 

3
 Available at http://www.irisa.fr/texmex/people/raymond/Tools/tools.html 

5877



 
 
 
  
 

 

 

 

 

 

 

In the experiment, we use a linear-chain CRF. The standard 
Limited-memory BFGS (L-BFGS) [32] algorithm and L2 
regularization are used to train the CRF models with the sparse 
features of a high dimension. 

Classification performance is measured by precision and 

recall. The confusion matrix with all features is shown in 
Table 3 and Table 4, and the classification rate is C1: 96.16%, 
C2: 49.13%, C3+C5: 61.01%, C4: 78.45%. Although the error 
rate by CRF-1 in the first stage of classification is not small, 
part of them are detected and discarded in the second stage of 
classification by CRF-3. We also test the performance of CRF-
3 as shown in Table 5. We notice the false acceptance rate in 
CRF-2 and CRF-3 (errors in C2 and reject) is relatively high, 

but we can tolerate many of these classification errors caused 
by the homophonic characters, which widely exist in Mandarin 
Chinese. 

Table 3 Confusion matrix of CRF-1 on CCLR-DEV. 

REF\HYP C3+C5 C4 Sum Recall 

C3+C5 5575 3563 9138 61.01% 

C4 3468 12624 16092 78.45% 

Sum 9043 16187 25230 / 

Precision 61.65% 77.99% / / 

 

Table 4 Confusion matrix of CRF-2 on CCLR-DEV. 

REF\HYP C1 C2 Sum Recall 

C1 70485 2812 73297 96.16% 

C2 3525 3404 6929 49.13% 

Sum 74010 6216 80226 / 

Precision 95.24% 54.76% / / 

 

Table 5 Confusion matrix of CRF-3 on CCLR-DEV. 

REF\HYP Reject Accept Sum Recall 

Reject 9333 8028 17361 53.76% 

Accept 4880 77647 82527 94.09% 

Sum 14213 85675 99888 / 

Precision 65.67% 90.63% / / 

4.2. DNN Acoustic Models Enhanced by Selected Data 

Then, we make utterance selection based on the character 
acceptance rate (CA) as a result of the previous classification. 
It is not practical to tune the CA threshold by using the 
development set, as it would take so long to train the DNN 
model for each CA threshold value. Considering Spoken 
Chinese is highly homophonic, we tolerant some character 
errors in utterances and accept the utterances with their CA no 
lower than 70%. Further relaxing the threshold only degrades 

the ASR performance due to the increase of errors.  
The proposed method is applied to CCLR-USV to train an 

enhanced acoustic model, which are tested on CCLR-TST. 
The DNN acoustic model is retrained by adding the data 
selected from unlabeled data (CCLR-USV) to the labeled data 
(CCLR-SV and CCLR-LSV).  ASR performance of the 
enhanced model is evaluated on both of CCLR-DEV and 
CCLR-TST. The proposed data selection method is compared 

with other methods as follows: 

 Baseline GMM and baseline DNN: the models are 

trained by only using CCLR-SV and CCLR-LSV as 

described in Section 2.  

 DNN (CMS): we select utterances from CCLR-USV 

using the baseline DNN system based on a threshold of 

averaged CMS score (CMS≥0.6). The optimal threshold 

was determined by using GMM (MLE) models and 

CCLR-DEV [27]. 

 Combine-ROVER: combine the ASR hypotheses of 

CCLR-USV from the baseline GMM and the baseline 

DNN systems using ROVER [16]. We select utterances 

according to the optimal threshold of the averaged CMS 

score  (CMS≥0.6). It is the conventional method for 

leveraging hypotheses and data selection. We also use 

all of the combined ASR hypotheses of CCLR-USV 

without any selection (CMS≥0.0).  

 Combine-CRFs: combine the ASR hypotheses of 

CCLR-USV from two different baseline systems by 

using a set of CRF models. This is our proposed method 

for leveraging hypotheses and data selection. Effect of 

data selection is investigated on three thresholds: CA≥

0.0 (no selection), CA=1.0 (use utterances with all 

characters accepted), and CA≥0.7.  

 
Table 6 ASR performance by unsupervised training.  

 Amount of data (hours) CER% 

labeled unlabeled DEV TST 

Baseline GMM  97.2 0 24.2 27.5 

Baseline DNN 97.2 0 22.7 25.7 

DNN (CMS≥0.6) 97.2 97.1 22.2 25.4 

Combine-ROVER (CMS≥0.0) 97.2 114.7 21.9 24.9 

Combine-ROVER (CMS≥0.6) 97.2 82.3 21.9 25.0 

Combine-CRFs (CA≥0.0) 97.2 114.7 21.5 24.4 

Combine-CRFs (CA=1.0) 97.2  38.9 21.3 24.5 

Combine-CRFs (CA≥0.7) 97.2  78.3 21.1 24.2 

        
ASR performance in CER is listed in Table 6. In this 

experiment, we use the same setting with the baseline system 
described in Section 2 for the DNN model specification as 
well as the lexicon and the language model. The results show 
that our proposed unsupervised training method significantly 
improved from the baseline. It also outperforms all other 

methods on both evaluation data sets.  
We observe that both of Combine-CRFs and Combine-

ROVER outperform DNN (CMS ≥ 0.6). This suggests the 
system combination effectively leverages the quality of 
automatic generated transcription texts. The fact that our 

proposed method Combine-CRFs (CA ≥ 0.0) further 

outperforms the Combine-ROVER (CMS≥0.0) demonstrates 
the effectiveness of the CRF models using many features. The 
Combine-ROVER (CMS≥0.6) and Combine-ROVER (CMS≥

0.0) has no significant difference, while the improvement by 

Combine-CRFs (CA≥0.7) is statistically significant compared 

with the other two models (CMS≥0.0 and CA=1.0) among our 

proposed method and the improvement by Combine-CRFs 

(CA=1.0) is also statistically significant compared with 

Combine-ROVER (CMS≥0.6). This confirms the data selection 
with the verifier CRF has some effect for further improvement.  

5. Conclusions  

We have proposed a new scheme for hypotheses leveraging 
and data selection for unsupervised training of DNN acoustic 
model. The method uses dedicated classifiers, which are 
trained with the training database of the baseline acoustic 

model, to combine complementary ASR hypotheses and select 
usable data for model training. We designed a cascaded 
classification scheme based on a set of binary classifiers, 
which incorporates a variety of features. Experimental 
evaluations show that the proposed unsupervised training 
method effectively filters usable data, and improves the ASR 
accuracy from the baseline model and in comparison with the 
conventional ROVER-based method.  
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