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ABSTRACT

Inspired by the successful applications in image recogni-
tion, the very deep convolutional residual network (ResNet)
based model has been applied in automatic speech recogni-
tion (ASR). However, the computational load is heavy for
training the ResNet with a large quantity of data. In this pa-
per, we propose an incremental model training framework to
accelerate the training process of the ResNet. The incremen-
tal model training framework is based on the unequal impor-
tance of each layer and connection in the ResNet. The mod-
ules with important layers and connections are regarded as
a skeleton model, while those left are regarded as an auxil-
iary model. The total depth of the skeleton model is quite
shallow compared to the very deep full network. In our in-
cremental training, the skeleton model is first trained with the
full training data set. Other layers and connections belonging
to the auxiliary model are gradually attached to the skeleton
model and tuned. Our experiments showed that the proposed
incremental training obtained comparable performances and
faster training speed compared with the model training as a
whole without consideration of the different importance of
each layer.

Index Terms— Speech recognition, Acoustic model,
DNN, very deep convolutional residual network (ResNet)

1. INTRODUCTION

Since very deep convolutional networks (AlexNet [1], VGG
[2], etc.) achieved impressive results in the visual and image
process area, deeper and deeper structures have been inves-
tigated. These models revealed the importance of network
depth. However, training a further deeper convolutional net-
work model will face the challenge of the gradient-vanishing
and overfitting problems. Instead of learning a new repre-
sentation at each layer, deep convolutional residual network
(also known as ResNet [3] ') use residual connections (short-
cut/skip connections [4]) to learn residuals. The network had

UIn this paper, “ResNet” is short for “very deep convolutional residual
network” following the paper [3].
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excellent convergence speed and showed compelling accu-
racy.

In speech recognition field, the deep residual networks
also get magnificent performance [5, 6, 7, 8, 9, 10, 11]. How-
ever, these deep stacking models (always hundreds of layers)
were initially designed for image recognition tasks, and ex-
tremely computationally demanding for speech recognition
tasks, limiting the training and deployability. For most of
the researchers, aggressively using massive GPUs to accel-
erate training speed is unrealistic. The motivation of this pa-
per is focused on solving this problem: Given limited com-
putational resources, how to efficiently accelerate training a
very/ultra deep ResNet with little loss of precision.

Current research shows reducing the computational cost
of the convolutional operation can speed up deep convolu-
tional network training and compress the model size. For ex-
ample, 2D filters are divided into independent-assumed 1D
filters [12, 13]. Effective network structure pruning meth-
ods have been proposed, i.e. stochastic depth/dropping layers
[14, 15] or learning structured sparsity [16].

Instead of pruning the model parameters, we try to keep
all of the parameters for more precise decision boundaries.
Recent research [17] also showed the current prevailing
ResNet architecture with short-cut paths and some form
of the ensemble of neural networks (a collection of many
paths). Inspired by this research, we proposed an incremental
training method. We first train a shallow skeleton model with
the full training data set. The skeleton model includes the
paths connecting the feature input and softmax output and
substantial for both training and testing. Then the other lay-
ers are gradually attached to the skeleton model and trained.
In this way, the whole very deep network can be constructed
incrementally.

The rest of this paper is organized as follows. Section 2
briefly reviews the background knowledge of ResNet and its
application in speech recognition. Section3 describes our
proposed method to simplify and speed up ResNet acous-
tic training. Section4 presents evaluations of the proposed
method. Conclusions and future works are given in Section 5.
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2. VERY DEEP CONVOLUTIONAL RESIDUAL
NEURAL NETWORKS FOR SPEECH RECOGNITION

In this section, we take the benchmark 110-layer ResNet [3]
as presented on CIFAR-10 [18] as an example to introduce
the original structures of ResNet 2. If we consider each frame
of the speech signal as a 2D (temporal and frequency domain)
image, the general concept of ResNet can also be successfully
applied to speech recognition tasks.

The basic unit of a ResNet model is the residual block,
and each block consists of the following two components:

1. Conv(3x3)-BN-ReLU-Conv(3x3)-BN 3 layer-sequence:

Two convolutional layers with small 3x3 filters con-
nected with the ReLLU activation. Each convolution is
followed by batch normalization [21].

2. Residual connection (short-cut/skip): Signals can by-
pass the transformation of the whole block from these
short-cut/skip connections. We use 1x1 conv layers as
the shortcuts (Fig. 1 right) when the dimensions of fea-
ture maps do not match. Otherwise, we use an identity
shortcut (Fig. 1 left).

Conv (3x3)

Conv (3x3)

Conv (1x1)

Conv(3x3)

Fig. 1. Typical Structure of residual block.

There are three groups of residual blocks with small 3x3
filters that differ in the number of filters (16, 32 and 64) and
we call them ResBlock-16, ResBlock-32 and ResBlock-64.
And each group is a stack of 18 residual blocks in the 110-
layer ResNet model. The convolutional layers mostly have
3x3 filters: for the same output feature map size, the layers
have the same number of filters, and if the feature map size is
halved, the number of filters is doubled. Zero padding is used
to all the convolutional operations. Downsampling is done by
convolutional layers (blocks are shown in Fig. 2 right) using

2Current prevalent structures of ResNet such as wide residual network
(WRN) [19] or Inception [12] are not followed in this paper.

3There are also residual blocks with other structure, e.g. Conv(1x1)-BN-
ReLU-Conv(3x3)-BN-ReLU-Conv(1x1)-BN [3] used in ImageNet bench-
marks [20] and the pre-activation structure proposed in [4]. In this paper,
we focus on a simple structure.
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a stride of 2x2. At last, the network ends up with an averaged
2D pooling (2x2 filter and 1x1 stride), a fully connected feed-
forward layer (without batch normalization) and softmax of
8522-dim output.
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Fig. 2. ResNet Structure for Speech Recognition (54 blocks).
(ResBlock-16/32/64 means the residual block with 16/32/64
filters.)

The work by Wang et.al [5] and the system we con-
structed (see Section4) confirm that the ResNet acoustic
model has better performance than conventional DNN mod-
els.

3. INCREMENTAL TRAINING AND
CONSTRUCTING

3.1. Skeleton Network and Auxiliary Networks

A. Veit et al. [17] examined the current prevailing ResNet ar-
chitecture with short-cut paths and some form of the ensemble
of neural networks (a collection of many paths). They ob-
served: during training, the updates were not happening uni-
formly across all layers, as they always would for traditional
deep neural networks. Every training point would adjust the
weights along a specific set of paths. And when testing, the
input has its unique set of paths to the output, without having
to go through every single layer.

We trained three seed ResNet acoustic models using the
training data of 27.6 hours (CSJ-Traingyay, see Section4.1).
These seed ResNet models are constructed using the simi-
lar network components and structures we introduced in Sec-
tion 2 with 110 layers (18 ResBlock-16 + 18 ResBlock-32 + 18
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Fig. 3. Averaged frame log-likelihood change (Loglikeli-
hood after dropping - Loglikelihood before dropping) of three
ResNet models with different number of ResBlocks (The blue
solid line is based on decoding 10 utterances selected from a
male speaker in CSJ-EvalO1 and the red dotted line is based
on decoding 10 utterances selected from a female speaker in
CSJ-Eval02 for verification).

ResBlock-64, see Fig.3 top), 62 layers (10 ResBlock-16 + 10
ResBlock-32 + 10 ResBlock-64, see Fig. 3 middle) and 20 lay-
ers (3 ResBlock-16 + 3 ResBlock-32 + 3 ResBlock-64, see Fig. 3
bottom).

Every time we drop a single block * from one of these
seed models, we make a decoding using the modified model.
We calculate the averaged frame log-likelihood change from
the seed model results and show them in Fig.3. We decode
two data sets: 10 utterances selected from a male speaker in
CSJ-EvalO1 (the blue solid line in Fig.3) and 10 utterances
selected from a female speaker in CSJ-Eval02 (the red dotted
line in Fig.3). As validation, we repeat the block dropping
processing on similar models when training with small data.
The cross-entropy changes are shown in Fig.4. The results
suggest the followings:

The contribution from every single block to training and
testing is different. Some blocks are playing significant roles
in the whole network. Removing them from the network
would cause a sharp change to the log-likelihood and the
cross-entropy. The positions of these most important blocks
are decided by the residual network topology and are inde-
pendent of the testing data. This observation matches the
fact reported in [17]. And these locations are summarized as
follows to help us identify the skeleton from a full ResNet.

1. After the feature input (e.g. block 1-3 in Fig.3 top,
block 1-3 in Fig. 3 middle and block 1 in Fig. 3 bottom).

4Dropping block means removing the Conv(3x3)-BN-ReLU-Conv(3x3)-
BN sequence from a residual block and remaining the residual connection.
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Fig. 4. Cross-Entropy change (CE after dropping - CE before
dropping) of three ResNet models with different number of
ResBlocks while training on the first 7000 samples of training
data.

2. Before the network output (e.g. block 51-52-53-54 in
Fig. 3 top, block 29-30 in Fig. 3 middle and block 9 in
Fig. 3 bottom).

3. Between two group of blocks with different feature-
map size (e.g. block 19-37 in Fig.3 top, block 11-21
in Fig. 3 middle and block 4-7 in Fig. 3 bottom).

4. We also observed some individual blocks having rela-
tively larger influence (although not so obvious com-
pared to the blocks mentioned above) to the training
and testing (e.g. block 21,24,31 in Fig.3 top, block
13,17 in Fig. 3 middle and block 5,6 in Fig. 3 bottom).

We name these blocks playing significant roles in the
whole network as “skeleton network”, because it includes the
paths connecting to the feature input and softmax output and
is thus substantial for both training and testing. Similarly, the
remaining layers can be regarded as “auxiliary networks”.

Table 1. Skeleton Networks and Auxiliary Networks of 110-
layer ResNet (not including the first convolutional layer and
the last fully-connected layer)

Num. of Blocks
#filter=16 | #filter=32 | #filter=64
Skeleton network 2 4 5
(20% full depth)
Auxiliary network
(80% full depth)

all other blocks excluding blocks
belonging to the skeleton network




3.2. Proposed Training Method

Inspired by research in [17] and our observation, we propose
an incremental training method as follows:

1. Train a seed model of 110-layer ResNet with a small-
sized data set.

2. Extract a small number of layers (2 ResBlock-16 + 4
ResBlock-32 + 5 ResBlock-64, 24 layers in total) from
the 110-layer seed model as the skeleton network (see
Table 1). Then train the skeleton model with the full
training data set.

3. Then the auxiliary networks can be copied from the
seed model and attached to the trained skeleton network
from the last step. The auxiliary network can be trained
with less computational resources and the whole very
deep network can be constructed efficiently.
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Fig. 5. Incremental training and constructing the very deep
network. (We extract the skeleton model from 110-layer seed
ResNet.)

The flowchart of this method is shown in Fig. 5, and this
method is a little similar to the discriminative pretraining [22]
and greedy layer-wise training [23], but is proposed to save
computational resources for fine-tuning. We also tried to use
a 20-layer ResNet (3 ResBlock-16 + 3 ResBlock-32 + 3 ResBlock-
64) directly as the skeleton model and to self-copy the blocks
to 110 layers during training. However, the training is very
slow and difficult to converge.

4. EXPERIMENTS

4.1. Task and Data Descriptions

In this paper, we focusing applying the ResNet model to
Japanese lecture transcription tasks. We tested our proposed
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method on the “Corpus of Spontaneous Japanese (CSJ)” [24].
The corpus consists of over 600-hour lecture recordings. It
has three official evaluation sets (CSJ-Eval01, CSJ-Eval02,
and CSJ-Eval03), each containing 10 lecture recordings [25].
We also pick up 10 lecture recordings for development and
validation (CSJ-Dev). Finally, we used the 240-hour lec-
ture recordings as the training set (CSJ-Train) according to
[26, 27, 8, 25]. We also select 27.6-hour training data in
CSJ (CSJ-Traingy,,) to train a seed model without paral-
lelization for warm-start initialization [28]. And this seed
ResNet model is also used to select the skeleton networks as
described in Subsection 3.1.

Table 2. Data Sets of CSJ

#Lectures | Hours
Training set | CSJ-Traingman 155 27.6
CSJ-Train 957 240
Development set (CSJ-Dev) 10 2.0
CSJ-Eval01 10 2.0
Testing set CSJ-Eval02 10 2.1
CSJ-Eval03 10 1.4

We train the baseline model using CSJ-Train. We first
trained a GMM-HMM model using the MFCC feature with
linear discriminant analysis (LDA), a maximum likelihood
linear transform (MLLT) and fMLLR based speaker adaptive
training (SAT). Then, we train a DNN model with five hidden
layers each comprising 2048 hidden nodes. The output layer
had about 8522 nodes that corresponded to the tied-triphone
states of the GMM-HMM model. We used 24-dim filter-bank
features together with its 1st and 2nd order derivatives to train
DNN model. All these features are mean and variance nor-
malized per speaker. The filter-bank features of both the pre-
vious and subsequent five frames (11 frames of features in
total) are added when inputting them into the DNNs. The
DNN model is initialized using unsupervised pre-training and
supervised fine-tuning using standard stochastic gradient de-
scent (SGD) based on the cross-entropy loss criterion. All
these were implemented using the Kaldi toolkit [29].

We trained a 4-gram word language model (WLM) from
the transcription of 591-hour CSJ training data. The vocabu-
lary size of the WLM was 98K. These settings are the same
as [27]. The DNN-HMM baseline acoustic model is shown in
Section 4.3.

4.2. Experimental Settings for ResNet

We use the 110-layer ResNet structure introduced in Sec-
tion 2. Similar to settings in [7], the features are concatenated
into one channel (static + A + AA). The label is the same
to the state label of the DNN-HMM baseline.

We use the 27.6-hour training data (CSJ-Traingy.) to
train a 110-layer seed model without parallelization for



warm-start initialization. Then the 240-hour training data
(CSJ-Train) is used for parallel training.

In the incremental training, the skeleton model is used
for warm-up initialization. Then the 240-hour training data
(CSJ-Train) is used for parallel training.

Instead of adding the blocks at once, we add the auxiliary
blocks incrementally (50% at first and then the other 50%).
Each time we add the auxiliary networks to the skeleton net-
work, we slightly tune the whole network with part of the
small data (CSJ-Traingyay) several epochs and small learning
rate before real retraining with 240-hour data set. The long
span residual connections in the skeleton model are preserved.

In this paper, model training is implemented with CNTK
toolkit [30] and python scripts. To be consistent with our for-
mer systems, we use Kaldi IO for both of the feature and
label. We use stochastic gradient descent (SGD) with Nes-
terov momentum [31] and cross-entropy loss. To speed up
the experiments, we use the block-wise model update filtering
(BMUF) distributed training algorithm, originally proposed
in [32]. The full networks and the skeleton networks are all
trained on 4 Tesla K40 GPUs in parallel. The initial learning
rate for each mini-batch is 0.1 and momentum is 0.9. The
batch size is set to 4000. Maximum epoch number is set to
25. Decoding of ResNet model is done by feeding the scaled
log-likelihood output of network to the Kaldi decoder [29].

4.3. Experimental Results

In this Subsection (see Table 3), we will report the perfor-
mance of the 110-layer ResNet acoustic models (ResNet110)
on the three CSJ evaluation sets. In the conventional training
method, we train the ResNet110 full network acoustic model
(Res110-full) from a ResNet110 seed model described in
Section 4.2. We also get the seed models of the skeleton
network (Skeleton) and the auxiliary networks (Auxiliary)
from the same ResNet110 seed model to perform incremen-
tal training. The WER% on CSJ-Eval0l of the Skeleton
seed model (16.89%) has close performance compared to the
ResNet110 seed model (14.89%).

For comparison, we also train the conventional DNN-
HMM hybrid acoustic model (DNN-HMM), the Bidirectional-
LSTM-CTC (BLSTM-CTC) [27], and recent residual mem-
ory network (RMN [10], 15 layers, single direction) acoustic
models.

As shown in Table 3, we use the word error rate (WER%)
to be consistent with our former work [27]. The BLSTM-
CTC model is decoded with EESEN [33], while other models
are applied to Kaldi decoder.

Experiment results confirm that both ResNet110 full net-
work (Res110-full) and the skeleton network (Skeleton) out-
perform the DNN-HMM, BLSTM-CTC, and RMN. We also
notice that the performance gap between the skeleton net-
works and full network is small (around absolute 1% WER).

We estimate the training speed by calculating the frames
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Table 3. ASR performance (WER%) of acoustic models with
different neural network structures (The improvements com-
pared to the best results of conventional method with NO sta-
tistically significant difference are shown in bold fonts.)

Network WER%

EvalOl [ Eval02 [ Eval03
DNN-HMM 14.40 11.84 15.62
BLSTM-CTC (EESEN prior) [27] 14.19 11.33 16.49
RMN (15 layers) 13.92 11.21 15.18
ResNet110 Res110-full 12.26 9.83 13.73
(conventional)
ResNet110 Skeleton 13.13 10.41 15.31
(incremental) +Auxiliary 12.59 9.88 14.35

per second on every GPU and the number of epochs. The
speed to train the full network (Res110-full) with the 240-
hour training set is around 290 frames per second on every
GPU using 4 GPU in parallel. The whole training time is
almost three weeks. On the other hand, the speed of train-
ing a skeleton network (Skeleton) is 960 frames per second
on every GPU (3.3x faster than conventional method) with
the same data set and GPUs. When the seed model of aux-
iliary network (Auxiliary) is attached to the fully trained
skeleton model (Skeleton), we use the 240-hour training data
(CSJ-Train) to tune the parameters of the whole network with
8 epochs. And the WER%s can be improved to 12.59% (CSJ-
Eval01), 9.88% (CSJ-Eval02) and 14.35% (CSJ-Eval03)
which are comparable to the conventional method. In our
experiment, the proposed method can approximately save up
to 30% of the training time compared to the conventional
method. When the full network goes deeper, this method can
save more training time.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we focus on the efficient method to acceler-
ate training of a very deep convolutional residual network
(ResNet) with little loss of precision. We first train the skele-
ton model with the full training data set. The skeleton models
has only a small number of layers. And it includes the paths
connecting feature input and softmax output and thus is sub-
stantial for both training and testing. Other layers are gradu-
ally attached to the skeleton model and trained with relatively
less time. Experiments show the model trained with our pro-
posed method obtains comparable performances and much
faster training speed than its counterpart trained with the con-
ventional method. Rethinking our proposed method, when
training a complex model, we can first train most important
parameters (skeleton model) to get the basic decision bound-
aries, and then carving the more precise decision boundaries
with larger parameter sizes. For the future work, we will in-
vestigate how to effectively train deeper ResNets with larger
data set.
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