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ABSTRACT
A phonetic tied-mixture (PTM) model for efficient large vo-
cabulary continuous speech recognition is presented. It is
synthesized from context-independent phone models with
64 mixture components per state by assigning different mix-
ture weights according to the shared states of triphones.
Mixtures are then re-estimated for optimization. The model
achieves a word error rate of 7.0% at 20k-word dictation
of newspaper corpus, which is comparable to the best fig-
ure by the triphone of much higher resolutions. Compared
with conventional PTMs that share Gaussians by all states,
the proposed model is easily trained and reliably estimated.
Furthermore, the model enables the decoder to perform ef-
ficient Gaussian pruning. It is found out that computing
only two out of 64 components does not cause any loss
of accuracy. Several methods for the pruning are proposed
and compared, and the best one reduced the computation to
about 20%.

1. INTRODUCTION

Sharing and tying of HMM parameters for accurate and ef-
ficient acoustic modeling has been a major concern in large
vocabulary continuous speech recognition systems. A typi-
cal triphone model has thousands of states and hundreds of
thousands of Gaussian distributions. Estimation of such a
large number of parameters requires huge amount of train-
ing data to obtain the desired accuracy. Thus sharing and
tying of the models in various levels are widely adopted to
reduce the number of total parameters.

The current dominant approach of parameter tying is
the state sharing and clustering of triphone model according
to acoustic similarity. Another approach is a tied-mixture
(TM) system where a single set of Gaussian distributions
is shared by all HMMs while each state has different mix-
ture weights. And also there is phonetic tied mixture (PTM)
HMMs[1][2], where a set of Gaussian components is de-
fined independently for each phone and the triphone vari-
ants of the same base phone share the Gaussians set.

The TM and PTM HMMs are advantageous to the state-
clustered triphone in that overlapping mixture distributions

on different states are properly modeled with less Gaus-
sians, so the training can be more reliable. But in conven-
tional TM and PTM HMMs, all Gaussian distributions in
different states (within a phone in PTM) should be covered
by one codebook, and the size often gets very large to the
extent of hundreds or thousands. It is not easy to train such
a large mixture to an optimal point. In this paper we pro-
pose a PTM model of another parameter sharing scheme, a
phonetic state-based tied mixture model that realizes both
easy training and reliable estimation.

Another merit of TM over the triphone model is that
since it has a larger codebook with less redundant distribu-
tions, it is easier to introduce pruning mechanisms in Gaus-
sian mixture computation. Therefore, several pruning meth-
ods are also proposed and compared.

2. PHONETIC TIED-MIXTURE MODEL

A triphone model defines separate states for each context-
dependent phone variants in order to represent the cross-
phone articulation effects precisely. But as many context-
dependent states have their own mixtures, there can be many
overlapping mixtures among them. These cause the number
of parameters to grow improperly and make parameter esti-
mation unreliable.

In TM HMMs, on the other hand, a large number of
mixture components are shared within all states and the
states have different mixture weights for each. As the whole
acoustic space is modeled with larger mixture units, the
overlapping mixture components are well represented with
less parameters. However, TM models have not demon-
strated as good performance as the triphone model. The
total number of mixture components of TMs is usually
smaller by a magnitude, thus it can not have enough dis-
criminative ability. The root cause is that it is not easy to
train or estimate a large scale codebook of distributions as a
whole.

Based on these viewpoints, we propose another type
of PTM. By sharing a set of mixture components among
states of the same topological location, redundant compo-
nents in all triphone are merged. Compared with conven-



tional PTMs, the Gaussian distributions is modeled more
accurately by having independent mixture components on
different topological location.

The proposed PTM HMM is synthesized from state-
clustered triphones and a monophone model as illustrated in
Figure 1. The mixtures of monophone HMMs are assigned
to the corresponding states of the tied-state triphone HMMs,
where each non-shared state in triphones shares only the
mixture components and have different mixture weights.
After the assignment, the overall mixtures and weights are
re-estimated for optimization.

monophone HMM shared-state triphone HMM

|e|

|k-e+i|

|r-e+s|

|r-e+a|

phonetic tied-mixture
HMM

mixture
re-estimation

mixtures state clusters

Figure 1: Training of proposed PTM HMMs

The construction process is straight-forward and easy.
Mixtures are estimated by monophone models by gradu-
ally increasing their numbers of components. This makes it
easy to reliably estimate large number of mixtures. Context-
dependent modeling is realized by the state-clusters of the
conventional triphones. Here, corresponding mixture com-
ponents are substantially assigned by weighting among a
large codebook that efficiently covers the whole acoustic
space. The actual steps for building this model is as fol-
lows:

1. Train monophone HMMs that have a large Gaussian
mixture for each state. No parameter tying is done
here.

2. Train shared-state triphone HMMs using the same
phone set. The mixture components on this model
is used only for determining state-sharing, so a single

Gaussian is enough. Any method of can be used to
determine the state sharing, but the number of states
in a phone must be the same as the monophone on
step 1, and only states of the same topological loca-
tion within a phone are allowed to share.

3. Assign the mixtures of monophone HMMs to corre-
sponding states of the triphone HMMs. Tied triphone
states also share both the same mixture components
and weights, and non-tied states not shared on step 2
share only the mixture components and have different
mixture weights.

4. Re-estimate the mixture components and assigned
weights to discriminate triphones. The mixture itself
is also re-trained.

3. GAUSSIAN PRUNING METHODS

Acoustic matching often occupies the largest part of pro-
cessing time in current recognition systems, because a large
amount of Gaussian distributions must be computed. So re-
ducing the cost is significant for fast decoding.

Gaussian pruning is one approach to reduce the amount
of computed Gaussians. As the log likelihood of a Gaussian
density keeps descending while accumulating distances for
each vector element, we can determine whether the value
of the Gaussian will be below a certain threshold before
computing all the distance components. Especially, since
PTM HMMs have a larger mixture codebook, such a prun-
ing mechanism works more effectively than tied-state tri-
phone HMMs.

We propose several Gaussian pruning methods for re-
duction of computational cost. The purpose is to get k-best
Gaussians out of a mixture while cutting off as much com-
putations of other Gaussians as possible. These methods are
described as follows:

k-best vector threshold Use the value of the temporal k-
th best Gaussian as the pruning threshold. A Gaus-
sian is pruned if the accumulated distance reaches the
threshold while computing each distance component.
If it is not pruned to the last dimension, it means that
the value is within the k-best, so update the k-best
threshold.

k-best vector threshold initiated by previous best Same
as above but the k-best Gaussians of the previous
frame are computed first. As input vectors change
gradually in successive frames, we can expect that
the best Gaussian set in the previous frame gets
higher scores. This makes the initial threshold closer
to the true k-best value.



vector threshold with heuristic estimation When com-
puting a Gaussian, its expected value is estimated by
adding the temporary maximum values of the yet-to-
be-computed dimensions to the current accumulated
distance. Pruning is performed by the estimated
score. The initial maximum score on each dimension
is set up by computing the previous k-best Gaussians
first.

scalar threshold (dimension-independent pruning) An
independent threshold is set up for each dimension
by an offset from the maximum. First, compute the
previous k-best Gaussians and get the maximum for
each dimension. A Gaussian is pruned if its scalar
value on the dimension is below a certain range.

The former two thresholds are safe in that the precise k-
best Gaussians are guaranteed to be obtained without errors.
The latter two are unsafe, rather aggressive methods where
k-best Gaussians can be lost in the computation process by
mis-leading of heuristics or using a too narrow score range.

4. EXPERIMENTAL RESULTS

The accuracy and efficiency of the proposed PTM model
are evaluated. We build gender-independent PTM HMMs
of 43 phones that have 3 states for each, and each state has
a mixture of 64 Gaussians.

The task is 20k-word dictation of Japanese newspaper
articles with a word trigram model. The acoustic model
is integrated with JULIUS, our two-pass decoder based on
A* search[3]. The reference models are gender-independent
tied-state triphone models. They are all of 2000 states but
different in number of mixture components per state. These
modules are all available in Japanese dictation toolkit[4].

Test set contains 200 sentences spoken by 46 speakers,
equal number of male and female, from Japanese speech
corpus collected by Acoustical Society of Japan[5].

4.1. Comparison of Models

Word accuracy of the PTM model and triphone models is
compared in Table 1. Scale factors of the models are also
stated here. The proposed PTM achieves higher accuracy
than the shared-state triphone of the same complexity (i.e.
total number of Gaussian), and is comparable to the tri-
phone of four times as many mixture components. The fig-
ure is almost best for the test set. Thus it is proved that
the proposed PTM is superior to the triphone in that the
same accuracy can be achieved with less parameters. The
“PTM,synthesized” in Table 1 is a model that re-estimates
only the mixture weights and does not re-train the mix-
ture components. On the other hand, the “PTM,re-trained”

Table 1: Comparison of models

HMM state� total
model mix. size G. # accuracy

triphone 2000�16 32000 93.8
2000� 8 16000 92.7
2000� 4 8000 90.8

PTM,synthesized 129�64 8256 92.3
PTM,re-trained 129�64 8256 93.0

G. #: number of total mixture Gaussians
beam width = 1500

model re-estimates both. The latter achieves better accu-
racy, thus it is shown that re-estimating not only mixture
weights but also the shared Gaussian distributions is effec-
tive.

Next, we examine how these models are affected by
Gaussian pruning. Accuracy of each model against vari-
ous numbers of selected Gaussians is plotted in Figure 2.
For comparison, Gaussians are pruned independently within
each mixture in PTM and across all Gaussians in triphone
models. A smaller beam width is used in decoding for con-
venience.
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Figure 2: Accuracy decrease by Gaussian selection

The proposed PTM keeps high accuracy even when the
number of selected Gaussians is limited to only 3% (2-best
out of 64 mixture components in a mixture, 258 in total).
On the other hand, triphone systems are obviously sensitive
to Gaussian pruning. Over 2000 Gaussians per frame were
required to get sufficient accuracy. Our state-based PTM
consists of distributions without redundant components, and
makes severe pruning possible.



4.2. Comparison of Gaussian pruning methods

Next, we evaluate the performance of Gaussian pruning
methods to reduce the total computation cost. In this com-
parison, we want to get the best two Gaussians out of 64
mixture Gaussians with cutting computation of others as
much as possible. The computational cost is measured by
the total percentage of computed Gaussian distance compo-
nents.

Table 2: Comparison of Gaussian pruning methods
pruning Gaussian distance
methods components computed acc.

k-best 59 % 92.5
k-best,previous-best 52 % 92.5

heuristic 36 % 92.3
scalar 21 % 92.2

beam width = 800, 2-best selected

In Table 2, both computed amount and word accu-
racy for the proposed methods are listed. The first vector-
threshold method reduces the computed Gaussian distances
to 59%. And by setting initial threshold by the previous k-
best Gaussians, the ratio is improved to 52%. As pruning
error never occurs in these methods, they are simple and
reasonable ways to reduce the acoustic matching cost to a
half without decreasing any accuracy.

Using the heuristic estimation reduces the cost further
to 36% with little pruning error. The scalar threshold
(dimension-independent pruning) realizes the best perfor-
mance. The computed densities are remarkably reduced to
21%, with little loss of accuracy. But as the pruning per-
formance is determined by the threshold range, the scalar
method needs sensitive tuning.

5. MONOPHONE LEXICON TREE ON
PRELIMINARY RECOGNITION

As the proposed PTM HMMs are built using mixtures of
monophone HMMs, it is possible to re-define monophone
models together with triphones by sharing the same mix-
ture components. As monophones are context-independent,
we can make a smaller lexical tree and omit handling con-
text dependency. So we explore the possibility of using a
monophone tree lexicon at the preliminary recognition in
our multi-pass decoder for further efficiency.

The result is shown in Table 3. The compaction of the
lexicon tree does not improve the speed, and the growing er-
rors on the preliminary pass decrease the accuracy on the fi-
nal result. The results confirmed that the use of better acous-
tic model on the first pass is significant.

Table 3: Lexicon tree: triphone vs. monophone

lexicon state # acc. (acc1) time(�RT)

triphone 173251 92.2 (82.2) 4.5
monophone 128188 90.2 (76.8) 4.4

acc1: accuracy on the preliminary pass
CPU: UltraSPARC 300MHz

Finally, by tuning search parameters and using a smaller
beam width, accuracy of 90.4% is achieved with a speed of
2.3 times the real time.

6. CONCLUSION

A new PTM model with state-based mixture-tying scheme
has been introduced. The model is synthesized from mix-
tures of a monophone model and state-clusters of triphone
models. As the construction of the model is straight-
forward, training of the parameters can be more reliable.

This model achieves a word error rate of 7.0%, which is
comparable to the best figure by the triphone of much higher
complexity. With Gaussian pruning, computing only 2 out
of 64 mixtures per state does not cause any loss of accuracy.
The acoustic computational cost is reduced to about 20% by
the dimension-independent pruning.
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