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ABSTRACT systems which use linguistics to recognize humor [4, 6, 22], but

Shared laughter is a phenomenon in face-to-face human dialogue
which increases engagement and rapport, and so should be con-
sidered for conversation robots and agents. Our aim is to create a
model of shared laughter generation for conversational robots. As
part of this system, we train models which predict if shared laughter
will occur, given that the user has laughed. Models trained using
combinations of acoustic, prosodic features and laughter type were
compared with online versions considered to better quantify their
performance in a real system. We find that these models perform
better than the random chance, with the multimodal combination
of acoustic and prosodic features performing the best.
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1 INTRODUCTION

Although robots and agents are becoming more human-like in ap-
pearance and movement, their ability to engage in free conversation
is still at the surface level. This not only applies to sophisticated
dialogue generation through natural language processing, but other
non-linguistic phenomena such as backchanneling and fillers which
are a part of natural conversation.

One aspect of these systems is that of laughter during conversa-
tion. In particular, spontaneous laughter should be a goal of such
systems as this is not only human-like, it allows for more engage-
ment with the user [20, 24]. There have been attempts to create
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modeling these in live interactions is still difficult due to speech
recognition errors and added complexity of face-to-face interaction.
Another method is to recognize a laugh from the user and join in
with them, using behavior from the user as an indication of when
a laugh is appropriate. This can be termed as shared laughter.

The ongoing long-term goal of this research is to implement
a shared laughter system for the female android ERICA [10]. We
propose that such a system will add to the naturalness of ERICA
in free conversation. We also propose that such a system is not a
simple process of recognizing the user’s laugh and joining in, but
involves several classification steps.

Shared laughter has been implemented in systems with an ex-
ternal stimulus, such as a video [20], so the system can be sure that
laughing with the user is suitable. On the other hand, in face-to-face
conversation there is no external stimulus and less certainty about
whether joining in with the user is acceptable. In real conversation
many laughs are self laughs with no response from the conversation
partner. Therefore knowing if the system should engage in shared
laughter is important to maintain naturalness in conversation.

Our main goal in this paper is to address the challenge of dis-
tinguishing between self laughs and shared laughs. This model
can then be implemented in a conversational system to exhibit
natural laughing behavior. We measure the performance of several
types of models which use acoustic, prosodic features and laughter
type. Furthermore, we perform online model evaluation to better
quantify model performance for a real system.

2 RELATED WORK

Laughter detection from audio and visual sources has been well
studied [1, 2,7, 11, 18, 23, 25]. In this work we assume inital laughter
detection can be achieved using an external model and so focus
on further classification of shared laughter. Shared laughter itself
has been proposed as a form of mimicry [9, 19], studied in terms
of the relation of each laugh’s intensity [8], and is associated with
different speaker behaviors compared to self laughter [12].

There has also been research on laughter for robots and agents
including linguistic studies [3, 5], laughter motion generation [17]
and shared laughter responses [26]. Integrating laughter in a robot
or agent has also been shown to increase engagement and amuse-
ment [20, 24]. Studies on the application of robot laughter have so
far been confined mainly to scenarios where an external stimulus
provides the trigger for laughter. For example, a video [13, 20] or
multi-party quiz [24]. On the other hand, our aim is for shared
laughter to occur within some conversation, where the trigger is
laughter through dialogue rather than an external stimulus.

We are unaware of any models which have been trained on this
specific task. Exploring this aspect of conversation is necessary
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since we want the robot to engage in shared laughter at appropriate
times, not every time a laugh is detected from the user.

3 SHARED LAUGHTER MODEL

We propose a general system model of shared laughter consisting of
three main modules, as shown in Figure 1. We assume that shared
laughter consists of the user’s initial laugh, followed by the system’s
response laugh.
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Figure 1: General overview of shared laughter system. The
focus of this work is the shared laughter prediction module.

The first step is the detection of the initial laugh. This paper
assumes we have a model which can predict if an inter-pausal unit
(IPU) contains laughter or not. In Section 6.2 we show how much
this affects the performance of the entire system.

The second module is our main focus, which decides if a re-
sponse laugh should occur to create shared laughter. A system
which always responds with a laugh is far from human-like, as we
will show in Section 4. Furthermore, there are situations where it
may be undesirable to respond with laughter, such as embarrassed
laughter from the user. We propose that a shared laughter model
should predict suitable instances where laughter can be shared.

The final module is the decision of what type of laugh the agent
should respond with. We do not focus on this function in this work,
but propose that it is important for the agent to use several laughs
and pick one which is of an appropriate tone and emotion.

4 DATA COLLECTION AND ANALYSIS

We use data from a corpus of human-robot dialogues with a tele-
operated ERICA, collected from interactions with 61 male partici-
pants where ERICA was controlled by one of four female Wizard of
Oz operators. The scenario was that of speed dating - participants
engage in casual chat about topics such as favorite hobbies, likes
and dislikes. Operators engaged in completely free chat, allowing
explicit spontaneous laughs from operators and participants. Al-
though it is clear the "‘date” with ERICA is not real, this scenario
is an ideal example of mixed initiative conversation.

Each IPU was transcribed and laughs were annotated into two
types. A laugh occurring by itself was considered an isolated laugh,
while a laugh which occurred as part of speaking was considered a
speech laugh. We consider any IPU which is either an isolated laugh
or a speech laugh to be under the general category of a laugh IPU.

Given an initial laugh, we consider it to be shared if all the
following conditions hold:

o the initial laugh IPU is part of the speaker’s turn
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o the initial laugh IPU is an isolated laugh or a speech laugh
which ends with laughter

o the response laugh occurs within two seconds after the initial
laugh has ended

e both the initial laugh IPU and response laugh are greater
than 400ms in length

These conditions are somewhat arbitrary but the final condition
is based on ERICA’s actual system that ignores very short IPUs.
Laughs which matched these criteria were considered to be shared
laughs. Laughs which were classified as response laughs are not
considered to be initial laughs and so are omitted from the analysis.
All other laughs are considered to be self laughs. We identified 1206
initial laughs which fit these criteria, 698 (57.9%) self laughs and
508 (42.1%) shared laughs.

Table 1 shows statistics for laughter type according to the speaker.
Subjects laughed much more than operators. The majority of sub-
jects laughs were self laughs, while the majority of operator laughs
were shared. This could be due to the nature of the scenario, where
subjects may have been more proactive during speed dating.

Table 1: Frequencies of laughter type vs. speaker

Operator Subject Total
Self 58 640 698
Shared 232 276 508
Total 290 916 1206

Table 2 shows statistics for laughter type according to how it
was generated. Speech laughs outnumbered isolated laughs and
shared laughter is more likely to have a speech laugh as the trigger
(73%).

Table 2: Frequencies of laughter type vs. generation

Isolated Speechlaugh Total

Self 248 450 698
Shared 139 369 508
Total 387 819 1206

This data suggests that most laughs are not shared, so a con-
versational system should make a decision of which initial laughs
are appropriate for a response laugh. It also shows that laughter
detection should identify both isolated and speech laughs.

We use these laugh IPUs as samples for our models. Filterbanks,
pitch and power were extracted at 100Hz using an online pitch
tracker [15], with a microphone array for the subject and shotgun
microphone for the operator. The microphone array environment
is the same as the one used in ERICA’s live system [16], so we can
accurately determine how well the model would work in real time.

5 MODEL CREATION

We now describe several models which will make a classification
decision on whether a laugh is a self laugh or a shared laugh. Given
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that a laugh IPU has been recognized, can we predict if a response
laugh is uttered?

First we consider the issue of how to deal with the properties of
isolated and speech laughs. For an isolated laugh the entire IPU will
contain laughter information, but for a speech laugh the relevant
information is at the end of the IPU. From preliminary analysis, we
hypothesized that using just the final 1000ms of audio (whether
it is an isolated laugh or a speech laugh) could perform as well as
using the entire audio as a sample. In Section 6 we compare using
the final 1000ms (100 frames) of audio of the laugh IPU as a sample
to the entire laugh IPU.

Two types of audio-based features were considered as inputs
to the model. The first are the means and standard deviations of
40 acoustic mel-filterbank features. We chose these features for
practical reasons, since they can be extracted in ERICA’s real time
system and are also used for our laughter detection system. Means
and standard deviations of acoustic features have also been used in
previous work on laughter [26].

The second type of features are prosodic. These are based on the
pitch and power values across the entire IPU which can be easily
calculated in real-time. Specifically, for both pitch and power we cal-
culate the mean, median, standard deviation, maximum, minimum
and range. For pitch values, we only consider frames which are
voiced, since including unvoiced frames would have a significant
effect on the statistics. We also include the proportion of frames
in the IPU which are voiced as a separate feature, and the total
duration of the laugh, for a total of 14 prosodic features.

We also include the laughter type (isolated or speech laugh) as
a binary feature. From our corpus analysis, we expect that shared
laughter will be positively associated with a speech laugh.

We also explored linguistic features by using word vectors of
the previous utterances leading up to a laugh, and facial features
extracted by a web camera. However these performed worse than
the audio features, so have been omitted. This could be a result of
the comparatively low number of samples in our corpus.

All features were standardized for model training and feature
comparison. We trained logistic regression (LR) and support vector
machine (SVM) models. We also attempted deep learning tech-
niques but these showed poor performance, perhaps due to the
low number of samples. Training was implemented using 10-fold
cross-validation. Furthermore, we only consider initial laughs from
male users as part of the samples. This was because ERICA was
controlled by one of only four female operators with similar voices.
Therefore the data set contains 916 samples, 640 self laughs (69.9%)
and 276 shared laughs (30.1%).

6 RESULTS

Results of the models are given below, measuring the performance
on the prediction of shared laughter. Performance can be measured
in two ways - offline and online. The differences are shown in Figure
2.In the offline version, we assume that laughter detection and laugh
type detection (if any) is perfect. In the online version, we have
to make assumptions about errors in the initial laughter detection
model and the laughter type which will degrade the performance
of the model, but give us a more accurate indication of the actual
performance of the model in a live system.
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The online evaluation will assume that ERICA’s current laughter
detection model [14] will predict if the initial IPU is a laugh or not.
It was trained on the same interaction corpus and has an F-score of
0.762. We only test initial laughs where a laugh actually happened,
since our goal is shared laughter. If the laughter detection model
predicts a non-laugh, the shared laugh model will automatically
output no response laugh. For models with laughter type as a fea-
ture, we use another classification model which has an F-score of
0.905 to predict if a laugh is isolated or a speech laugh, and use this
result in the shared laughter model.
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Figure 2: Diagrams showing the prediction process of offline
(top) and online (bottom) models.

The baseline is a random model which selects the class according
to the distribution of shared laughter in the corpus (30.1%). We use
this as a baseline since our corpus shows that a model which always
does shared laughter would be unsuitable in a live system.

6.1 Offline evaluation

We first present results of the offline system. The laugh IPU is
assumed to have already been correctly classified as a laugh and as
a speech-laugh or isolated laugh.

We evaluate models based on how much of the audio sample
could be used for prediction - the whole IPU or only the last 1000ms
(if the IPU is longer than 1000ms). This is because some samples are
long speech-laugh IPUs. By including only the end of the IPU we
hope to remove redundant information not related to the acoustic
properties of the laugh. Table 3 presents results of our models. For
brevity, we only display the result of the best type of model (logistic
regression or SVM) for each combination of features.

We find that using the last 1000ms of a laugh IPU results in
performance comparable to using the entire IPU, although the best
performing model combined acoustic features and the laugh type,
while using all features results in a weaker model. Using laughter
type as a feature tends to improve the recall of the model.
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Table 3: Performance comparison of offline models

Precision Recall F-score
Baseline 0.301  0.301 0.301
Laugh type 0334 0.743 0461

Whole laugh IPU
Acoustic (SVM) 0.396  0.601 0.477
Prosodic (LR) 0.375  0.449 0.409
Aco. + pros. (SVM) 0.404  0.612 0.487
Pros. + laugh type (SVM) 0.319  0.670 0.432
Aco. + laugh type (SVM) 0.415 0.645  0.505
All features (SVM) 0.406  0.616 0.489
Last 1000ms of IPU

Acoustic (SVM) 0.421  0.591 0.492
Prosodic (SVM) 0369 0453  0.407
Pros. + laugh type (SVM) 0.333  0.707 0.453
Aco. + pros. (SVM) 0.415  0.601 0.491
Aco. + laugh type (SVM) 0.421  0.620 0.501
All features (SVM) 0.422 0594 0.493

Through feature selection across all folds, we found the prosodic
model selected just three features which had consistently high abso-
lute values for their coefficients, which could be directly compared
since they were all previously standardized. These were the mean
pitch (-0.44), median pitch (0.52) and length of the laugh IPU (0.37).
This suggests that a laugh is more likely to be shared if it has a
pitch distribution with a negative skew (since the median pitch is
much greater than the mean pitch) and lasts longer than average.

6.2 Online evaluation

Results of the online model’s performance are shown in Table 4,
where we consider the actual output of laughter detection and laugh
type classification models. We compare the best offline models
(according to F-score) to the online version.

Table 4: Performance comparison of online models

Prec. Rec. F-score
Baseline 0.301 0.301 0.301
Acoustic offline 0.421 0.591 0.492
Acoustic online 0.412 0.464 0.440
Prosodic offline 0.375 0.449 0.409
Prosodic online 0.341 0.558 0.423
Aco. + pros. offline 0.415 0.601 0.491
Aco. + pros. online 0.413  0.489 0.448
Prosodic + laugh type offline  0.333  0.707 0.453
Prosodic + laugh type online 0.327 0.536 0.407
Acoustic + laugh type offline  0.415 0.645 0.505
Acoustic + laugh type online 0.413  0.478 0.443
All features offline 0.422  0.594 0.493
All features online 0.412 0.489 0.447
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Results show a clear degradation in performance due to errors
from laughter detection and laugh type classification, although all
models still perform above the baseline. Recall is more affected in
an online setting, which is intuitive since the laughter detection
model will produce false negatives. The best online model uses both
acoustic and prosodic features.

7 DISCUSSION

Our results show that the acoustic and prosodic features are able
to detect whether a laugh is a self laugh or a shared laugh better
than chance, although the performance of the model is still fairly
weak. The analysis of prosodic features suggested the acoustics of
the initial laugh may have some characteristics which encourage a
response laugh. We also showed that the performance of laughter
detection is influential on the overall performance of the system so
this must also be improved for better classification performance.

We only trained on male subjects since the nature of the exper-
iment meant that operator laughs could only be elicited from a
small number of women. Gender could have an effect on laughter,
particularly for a speed dating scenario, so more female laughter
samples should produce a more generalizable model.

To progress towards our final system, we should take advantage
of other features and deep learning techniques. Due to the small
sample size in this study, these were not effective in this work, but
we expect other modalities become useful if we have additional
data, particularly facial expressions, linguistics and sentiment [21]
to play a role as an indication of emotion and possible humor.

An obvious issue is whether in fact we can consider the corpus to
be a “ground truth”. There are many instances where a shared laugh
is appropriate but not executed or vice versa. Another approach
to address this is manual annotation of only “strong” and “weak”
shared laughter, although this would reduce the number of training
samples. We intend to conduct a subjective experiment with our
final shared laughter system to evaluate if our approach is useful.
These results would give us a better indication of the quality of our
system than classification performance.

One aspect this study lacks is the timing of shared laughter. The
live version of our system assumes that the entire laugh has been
segmented before the robot can respond to it. However in the corpus
there are many examples of overlapping shared laughter. Although
it is possible to segment the user’s laughs quickly and respond
straight after, we do not know if this is acceptable compared to
overlapping laughter. This can be addressed in future work.

8 CONCLUSION

In this work we developed models for predicting shared laughter
in human-robot dialogue. We found that combining acoustic and
prosodic features was the best performing in an online system,
although there is much room for improvement, and initial laughter
detection has a significant impact on model performance. We intend
to implement this in a robot as part of an overall shared laughter
system for subjective evaluation.

ACKNOWLEDGMENTS

This work was supported by JST ERATO Grant number JPMJER1401
and JSPS KAKENHI Grant number JP19H05691.



ICMI 2020 Late Breaking Results ICMI 20 Companion, October 25-29, 2020, Virtual Event, Netherlands

REFERENCES [14] Koji Inoue, Divesh Lala, Katsuya Takanashi, and Tatsuya Kawahara. 2018. En-
[1] Zahid Akhtar, Stefany Bedoya, and Tiago H Falk. 2018. Improved Audio-Visual gagement recognition by a latent character model based on multimodal lister_ler
Laughter Detection Via Multi-Scale Multi-Resolution Image Texture Features behaviors in spoken dialogue. APSIPA Transactions on Signal and Information

and Classifier Fusion. In International Conference on Acoustics, Speech and Signal Processing 7 ‘(20148)' L . . . .
Processing (ICASSP). 3106-3110. [15] Carlos Toshinori Ishi, Hiroshi Ishiguro, and Norihiro Hagita. 2008. Automatic

[2] Faramarz Ataollahi and Merlin Teodosia Suarez. 2019. Laughter Classification Us- extraetion of pa_ralingui'stic information usipg Prosodic features related to FO,
ing 3D Convolutional Neural Networks. In International Conference on Advances duration and voice quality. Speech Communication 50, 6 (2008), 531-543.

in Artificial Intelligence (ICAAI). 47-51. [16] Carlos T.Ishi, Chaoran Liu, Jani Even, and Norihiro Hagita. 2016. Hearing support
[3] Anton Batliner, Stefan Steidl, Florian Eyben, and Bjoérn Schuller. 2019. On Laugh- system using enerOPment sensor network. IP IRQS‘ 1?75_1280' .
ter and Speech-Laugh, Based on Observations of Child-Robot Interaction. arXiv [17] Carlos Toshinori Ishi, Takashi Minato, and Hiroshi Ishiguro. 2019. Analysis and

preprint arXiv:1908.11593 (2019). generation of laughter motions, and evaluation in an android robot. APSIPA
Transactions on Signal and Information Processing 8 (2019).

[4] Dario Bertero and Pascale Fung. 2016. A long short-term memory framework . & ' i
[18] Reshmashree B Kantharaju, Fabien Ringeval, and Laurent Besacier. 2018. Au-

for predicting humor in dialogues. In North American Chapter of the Association

for Computational Linguistics (NAACL). 130-135 tomatic Recognition of Affective Laughter in Spontaneous Dyadic Interactions
[5] Francesca Bonin, Nick Campbell, and Carl Vogel. 2014. Time for laughter from Audiovisual Signals. In International Conference on Multimodal Interaction
Knowledge-Based Systems 71 (2014), 15 — 24. https://doi.org/10.1016/j.knosys. (ICMI). 220-228. L. , . L .
2014.04.031 [19] Costanza Navarretta. 2016. Mirroring facial expressions and emotions in dyadic
[6] Lei Chen and Chong MIn Lee. 2017. Convolutional neural network for humor conversations. In International Conference on Language Resources and Evaluation
recognition. arXiv preprint arXiv:1702.02584 (2017). (LREC). 469-474.

[20

[7] Sarah Cosentino, Salvatore Sessa, and Atsuo Takanishi. 2016. Quantitative laugh- Radostaw Niewiadt_)mski_, Jennifer I_-Iofmann, Jéréme_ Urbain, T.racey _Platt, Jo-
ter detection, measurement, and classification—A critical survey. IEEE Reviews in hannes Wagner, Bilal P,wt’ H'useym 'Cakrpak, Sathish Pammi, Tobias Ba}lr,
Biomedical engineering 9 (2016), 148-162. Stephane Dupont, Matthieu Geist, Florian Lingenfelser, Gray McKeown, Olivier

(8] Kevin El Haddad, Sandeep Nallan Chakravarthula, and James Kennedy. 2019. Pietquin, and Willibald Ruch.‘20134 Laugh-aware virtual agent and its impact ox}
Smile and Laugh Dynamics in Naturalistic Dyadic Interactions: Intensity Levels, user amusement. In International Conference on Autonomous Agents and Multi-
Sequences and Roles. In International Conference on Multimodal Interaction (ICMI). agen'l Systems (AAMAjS,)‘ 6197,626' . . X
259-263. [21] Birgitta Ojamaa, Kristiina Jokinen, and Kadri Muischenk. 2015. Sentiment anal-

[9] Sarah Estow, Jeremy P Jamieson, and Jennifer R Yates. 2007. Self-monitoring ysis on cqnversa}tion'al‘texts‘ In Proceedings of the 20th Nordic Conference of
and mimicry of positive and negative social behaviors. Journal of Research in Comp utatzonel ng”fsms (NODALIDA ?015) . 233_237' .

Personality 41, 2 (2007), 425-433. [22] Anil Ramakrishna, Timothy Greer, David C Atkins, and Shrikanth Narayanan.
[10] Dylan F Glas, Takashi Minato, Carlos T Ishi, Tatsuya Kawahara, and Hiroshi 2018. Computational Modeling of Conversational Humor in Psychotherapy. In

Ishiguro. 2016. Erica: The ERATO intelligent conversational android. In Interna- Inter speech. 2344-2348. . o

tional Symposium on Robot and Human Interactive Communication (RO-MAN). [23] Khiet P Truong and David A Van Leeuwen. 2007. Automatic discrimination

22-29. between laughter and speech. Speech Communication 49, 2 (2007), 144-158.
[11] Géabor Gosztolya and Laszl6 Téth. 2019. Calibrating DNN Posterior Probability [24] Bekir Berker Tﬁrker, Zana Buginca, Engin Ersz Yiicel Yemez, and T Metin Sezgln'
Estimates of HMM/DNN Models to Improve Social Signal Detection From Audio 2017. Analysis of Engagement and User Experience with a Laughter Responsive

Social Robot. In Interspeech. 844-848.

[25] Bekir Berker Turker, Yucel Yemez, T Metin Sezgin, and Engin Erzin. 2017. Audio-
facial laughter detection in naturalistic dyadic conversations. IEEE Transactions
on Affective Computing 8, 4 (2017), 534-545.

[26] Jérome Urbain, Elisabetta Bevacqua, Thierry Dutoit, Alexis Moinet, Radoslaw
Niewiadomski, Catherine Pelachaud, Benjamin Picart, Joélle Tilmanne, and Jo-
hannes Wagner. 2009. AVLaughterCycle: An audiovisual laughing machine. In
International Summer Workshop on Multimodal Interfaces. 79-87.

Data. In Interspeech. 515-519.

[12] Rahul Gupta, Theodora Chaspari, Panayiotis G Georgiou, David C Atkins, and
Shrikanth S Narayanan. 2015. Analysis and modeling of the role of laughter in
motivational interviewing based psychotherapy conversations. In Interspeech.

[13] Jennifer Hofmann, Tracey Platt, Willibald Ruch, Radoslaw Niewiadomski, and
Jérome Urbain. 2015. The influence of a virtual companion on amusement when
watching funny films. Motivation and Emotion 39, 3 (2015), 434-447.

66


https://doi.org/10.1016/j.knosys.2014.04.031
https://doi.org/10.1016/j.knosys.2014.04.031

	Abstract
	1 Introduction
	2 Related work
	3 Shared laughter model
	4 Data collection and analysis
	5 Model creation
	6 Results
	6.1 Offline evaluation
	6.2 Online evaluation

	7 Discussion
	8 Conclusion
	Acknowledgments
	References



