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ABSTRACT
Turn-taking in human-robot interaction is a crucial part of
spoken dialogue systems, but current models do not allow for
human-like turn-taking speed seen in natural conversation.
In this work we propose combining two independent pre-
diction models. A continuous model predicts the upcoming
end of the turn in order to generate gaze aversion and fillers
as turn-taking cues. This prediction is done while the user
is speaking, so turn-taking can be done with little silence
between turns, or even overlap. Once a speech recognition
result has been received at a later time, a second model uses
the lexical information to decide if or when the turn should
actually be taken. We constructed the continuous model us-
ing the speaker’s prosodic features as inputs and evaluated
its online performance. We then conducted a subjective ex-
periment in which we implemented our model in an android
robot and asked participants to compare it to one without
turn-taking cues, which produces a response when a speech
recognition result is received. We found that using both gaze
aversion and a filler was preferred when the continuous
model correctly predicted the upcoming end of turn, while
using only gaze aversion was better if the prediction was
wrong.

CCS CONCEPTS
•Human-centered computing→Human computer in-
teraction (HCI); •Computingmethodologies→ Super-
vised learning by classification; Discourse, dialogue and
pragmatics.
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1 INTRODUCTION
A long-term goal for android research is a robot which can
hold a conversation with humans while maintaining human-
likeness. Although there have been improvements for spoken
dialogue systems in terms of natural language processing
[29], there are other requirements for androids since their
realistic appearance influences the expectations of the user [1,
10, 30]. In spoken dialogue systems such as smart speakers,
conversational phenomena such as backchannels, fillers, and
gaze behavior are redundant or even non-existent, but these
are desired for androids since the goal is to match real human
behaviors in conversation.

In this work we address human-like turn-taking, which is
the switching in conversation from one speaker to another.
It is known that across many languages and cultures there is
little silence between turns in human conversation [13, 27].
Humans often respond as soon as the other turn has ended,
even overlapping with the end of the previous turn. Coordi-
nation of turn-taking occurs naturally and even in cases of
interruptions the conversation can continue smoothly.
On the other hand, turn-taking in human-robot conver-

sations is more structured. Users often have to wait for the
robot to recognize and then generate a response to their ut-
terance. Designers of conversational systems aim to prevent
the system from interrupting the user and disrupting the
flow of the conversation. Although this method is safer, turn-
taking is slower and not as human-like. Previous research
has claimed users do not need fast response times from a ro-
bot [24]. However, we argue that increased user expectation
due to the realism of androids means human-like turn-taking
speed needs to be considered for these types of robots.
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The major limitation of online turn-taking is that the sys-
tem cannot respond as fast as a human. An automatic speech
recognition (ASR) system can only generate an utterance
result after a pause has been detected by a voice activity
detection model, so there will always be a period of silence
after the user’s turn. On average there is about 100-200ms
of silence in between turns in human conversation [11, 27]
and in many cases turn overlap, but even fast ASR systems
will not generate a result within this time.

Our research goal is to implement a turn-taking system for
an android which exhibits human-like speed and behaviors.
In order for human-like turn-taking speed, the system should
take the turn before an ASR result has been received. Our
approach is to generate multimodal cues which indicate the
turn is going to being taken. We predict the upcoming end of
the turn while the user is speaking, so that these behaviors
are timed close to the end of the user’s speech. We also
evaluate if this approach is acceptable for users.
The next section details two main types of turn-taking

models used in previouswork andwhy these have limitations.
We then present our combined architecture in Section 3. A
continuous model to predict turn-taking cues is described
in Section 4, and evaluated in Section 5. We then describe
our subjective experiment in Section 6, the results in Section
7, before discussions of the outcomes of our work. In this
paper Japanese is used as the target language.

2 TURN-TAKING MODELS
End-of-turn prediction is the problem of determining if the
speaker has finished their turn. We assume a fixed silence
threshold for turn-taking is always sub-optimal, as has been
shown in other works [11, 15]. There are two main machine
learning approaches.
The first approach uses the inter-pausal unit (IPU) or an-

other lexical unit from an ASR system as a basis for predic-
tion, as shown in Figure 1. Lexical information can be used to
determine the end of the turn, such as if the IPU is a question.
Prosodic and filter-bank features of the IPU can also be used
as inputs to the model. Such models have been well studied
in the literature [7, 11, 14–17].

Figure 1: Diagram of IPU-based turn-taking model.

The second approach is a continuous model, shown in
Figure 2. In this model prediction is done continuously (e.g.
every 100ms), using only features which can be extracted
in real-time. This includes prosodic information such as F0
and power, and also non-verbal signals such as eye gaze.
Implementations of this model have become popular due to
deep learning techniques [5, 22, 25].

Figure 2: Diagram of continuous turn-taking model.

There are strengths and weaknesses to each approach for
an online system. The IPU-based model is arguably more
robust, since lexical content is a good indicator of the end
of a turn. However, there is a limit to the speed at which
we receive this IPU, since it cannot be recognized before a
pause is detected. This detection means the IPU will not be
received until some time after the user has finished their turn.
A solely IPU-based approach cannot produce the very short
or overlapping turn-taking times found in real conversation.

The continuous approach mitigates this problem as turn-
taking prediction can be done at any time. However, this may
be less accurate since we do not have lexical information and
must predict using audio and body data streams, which may
be unreliable. Continuous models have been implemented
which predict the next speaker [5, 22, 25], but these make
predictions after a defined pause time which is longer than
human-like turn-taking speed. Incremental ASR can provide
IPUs very quickly [25], but other work has shown there
would still be a high number of false cut-ins because of
relatively long pauses during the turn [11, 15].

3 HYBRID TURN-TAKING MODEL
We propose a hybrid turn-taking model which combines the
speed of a continuous model with the more reliable IPU-
based approach. The concept is shown in Figure 3.
We predict the end-of-turn while the user is speaking

using a continuousmodel. The actual end-of-turn is a discrete
time point, so it predicts if the turn will end within a certain
period of time (e.g. 500ms). When the system does this, it
should output some behavior which cannot be a response to
the user’s speech, since the ASR result is still unknown.
We define this behavior as a turn-taking cue which sig-

nals that a turn may be taken, but is not a response to the
utterance. We focus on two types of turn-taking cues. Gaze

227



Smooth Turn-taking by a Robot Using an Online Continuous Model ICMI ’19, October 14–18, 2019, Suzhou, China

Figure 3: Diagram of proposed hybrid turn-taking model.

aversion is known to indicate that a speaker is beginning
their turn [9, 20], where both parties engage in mutual gaze
at the end of the first speaker’s turn and then the second
speaker averts their gaze during the turn switch. The second
cue is a verbal filler. Fillers, or filled pauses, are non-lexical
and used to regulate turn-taking [23]. In a previous analysis
of our corpus it was found that 16.4% of turns used fillers as
the first utterance [12].
Previous works analyzed fillers as a way to avoid unnec-

essary silences [18, 21, 24], but this is different from using
fillers as a way to grab the turn quickly. Gaze aversion was
also found to be successful in turn-taking management [3, 8],
although participants read from a piece of paper so gaze in-
formation was a strong end-of-turn indicator. Another work
similar to this paper implemented a method which used filler,
gaze, smiling and breathing as turn-taking cues [26]. How-
ever, this scenario was a task with users looking at a table of
objects, so again gaze behavior was a strong indicator of the
end of a turn. It also used pauses as a basis for turn-taking
behaviors and was heavily hand-crafted. We distinguish our
work from others by targeting free conversation.

When an ASR result is received, the IPU-based model
can more reliably detect if the speaker’s turn has ended. In
this work we assume we have a reliable IPU-based model to
predict the actual end of the turn. Our goal is to show that
even with an accurate IPU-based model and fast ASR, the
addition of a continuous model to take the turn quickly will
improve the overall system.
Our hybrid model makes two end-of-turn predictions - a

continuous prediction to generate turn-taking cues and an
IPU-based prediction for the actual response. Continuous
prediction is done during speech, while more robust IPU-
based prediction is done upon receiving an ASR result. Our
approach predicts the end of the turn during speech rather
than at pauses, so fast and overlapping turn-taking becomes
possible.

4 CONTINUOUS MODEL IMPLEMENTATION
Our hybrid model requires both an IPU-based and continu-
ous model. Previous work has already shown robust online

IPU-based models can be implemented [11, 15–17], so rather
than retraining and evaluating a new model, we assume that
we are using an existing one. This section describes the im-
plementation of the continuous model only, which is novel
for this work.

Data collection
To train our model, we use 64 sessions of one-to-one inter-
actions with a subject and an android robot, ERICA [4]. The
corpus contains several scenarios, such as job interviews,
speed dating and attentive listening [11]. Subjects were told
of the scenario prior to interaction. ERICA was operated
by a hidden remote operator - one of five trained voice ac-
tresses used during the sessions. The voice of the operator
was synchronized with ERICA’s mouth movements so that
the conversation could be conducted naturally and without
fixed responses. Each session lasted from 5-20 minutes with
both genders and a diverse range of ages. Data recorded
for each session was audio data through both a fixed micro-
phone and microphone arrays. Body data of the subject was
captured using a Kinect sensor. IPUs were fully transcribed,
including annotations for fillers and backchannels.
Turns were also manually annotated as transition rele-

vance places (TRPs). TRPs are points in the conversation
where a turn could have switched, even if it did not occur in
the actual conversation [23]. For example, a speaker may ask
a question but get no response so asks it again. The end of the
first question is a TRP, since a turn could have changed. We
train the data using TRPs rather than the turns themselves,
but use the terminology “turn” for simplicity.

Model details
We constructed two separate models - an operator model
which was trained only on the operators of ERICA, and a
subject model trained only on the subjects. Our objective is
to predict the upcoming end of a turn (TRP) while the user is
speaking. Technically, this is the time point when the speaker
stops speaking, but defining it as such means the labels will
become severely unbalanced. To reduce this imbalance, we
label a positive classification as a time point where the end of
the turn will occur within the next 500ms. We do not make
any predictions within the first second of a turn or outside
of IPUs. Based on our previous analysis of this corpus, we
found other humans prefer a response time window of 200-
500ms after user silence [12]. However, we also consider the
processing time required to do the prediction and generate
the robot speech and behaviors. The real systemwill generate
a behavior slightly later than the actual ground truth, and
this timing will actually be closer to the ideal timing window.

When constructing the model, we ensured that we could
extract all the features in real-time. For audio features, we
used F0 measured in hertz and power measured in decibels,
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Figure 4: Visualizations of the continuous model prediction for turns classified as correct (top) and wrong (bottom), with
cpp = 3. The dashed window indicates the target prediction window, 500ms before the end of a turn/TRP. Text corresponds to
the actual IPU utterance. Note that in the correct turn there are two TRPs and the model correctly predicts the second one.

extracted with an online pitch tracker [6]. Each sample con-
tained one second of user data with 100 frames of audio data
per sample. Samples were taken every 100ms of speech. We
also removed outlier F0 values. For each F0 value in the sam-
ple we checked if its value was 80-120% of the previous F0
value. If not, we set its value to zero and considered them
unvoiced. We only kept sequences of F0 values which were
at least 50ms in length and considered these to be voiced.
This pre-processing can be done in real-time.

For every frame, we extracted 17 basic audio features
which we assumed would be helpful for discriminating the
end of a turn from mid-turn speaking and can be easily repli-
cated in spoken dialog systems. These are:

• Raw F0 and power
• ∆ and ∆∆ of F0 and power
• maximum, minimum, range, slope and standard devia-
tion of voiced F0 and power of previous 100ms

• ratio of voiced to unvoiced pitch in previous 100ms

For the subject model, we also extracted gaze features,
using a Kinect sensor to estimate head direction at a lower
sampling rate (approximately every 30ms). Gaze features
were only used for the subject model, since the operator

is in a remote location. The frame-based features for gaze
were the differences of the 3-dimensional head positions and
orientations. We performed late fusion of audio and gaze
features using concatenation of hidden states to account
for the difference in sampling rates. All features were z-
normalized over the particular sample, so we do not have
any speaker-dependent information used to train the model.
Since we have sequential data, we opted to use an LSTM

network with 128 nodes and 3 layers. The batch size was 32
and dropout was used at a rate of 20%. We split the data by
session, using a 60:20:20 ratio for training, validation and test
sets. In total we used 64 sessions of data. The operator model
contained 105,719 samples with 13,125 (12.41%) labeled as
positive. The subject model contained 116,401 samples with
10,699 (9.19%) labeled as positive.

5 MODEL EVALUATION
In this work we assume the IPU-based model is perfect, but
for reference we provide an estimate of its performance. We
analyzed several Japanese turn-taking models and found the
model by Masumura et al. [17] trained on a call center corpus
to be best performing (F1 score = 0.821). The model trained
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Table 1: Frame-based classification results for continuous
models.

Model Precision Recall F1

Proposed operator 0.409 0.491 0.446
Proposed subject 0.323 0.151 0.206
Proposed subject + gaze 0.327 0.169 0.223

on our corpus has lower performance (F1 score = 0.592) [11]
but reports a metric where the average response time was
around 1200ms for a false cut-in rate of 5%.
We evaluated our continuous model for every 100ms of

speech data in the test set. Results are shown in Table 1 for
operators only and subjects only.
The continuous models are less accurate than the IPU-

based models, justifying our need for a hybrid model. The
operator-only model is better than the subject-only model,
likely because there were only five female operators used for
the samples and the quality of the audio was higher as they
were in a soundproof room. Gaze features did not improve
the subject model by much, possibly due to the inaccuracy
of the Kinect sensor.
This type of evaluation gives no indication about real

system performance. Our test samples consist of many point-
wise evaluations of the same turn so we need a more appro-
priate way to test turn-based performance.
We performed a turn-based analysis of our test set by

identifying the time point during the turn where the system
predicted the upcoming end of the turn. Since we can order
our test samples chronologically, we know the probability of
the end of a turn over its duration. Examples of visualizations
of turns are in Figure 4.

We classify a turn depending on the time a positive classi-
fication is first predicted. If it is predicted within 500ms of
the end of a TRP (Figure 4 inside the positive classification
window), we classify it as correct, else it is wrong. If a correct
prediction occurs later than a wrong prediction it is still clas-
sified as wrong. If no positive prediction is made during the
turn, it is classified as missed. Many predictions are made
during the turn so classification is not based on receiving
one positive prediction, but consecutive positive predictions,
which we represent as cpp. We classified every turn in our
test set, with results shown in Table 2.

Reducing cpp decreasesmissed classifications but increases
wrong classifications. Differences between the operator and
subject model are because of the subject model’s weaker
metrics in Table 1. From these results we opted for cpp = 3
for the operator model and cpp = 2 for the subject model
for the best balance between precision and recall. The model

Table 2: Turn classification for continuous models. cpp is
the number of consecutive positive predictions needed to be
classified as an end of turn.

Operator model (total turns = 452)
cpp value

1 2 3 4

Correct 29.4% 35.8% 32.5% 21.2%
Classification Wrong 63.5% 49.1% 35.6% 25.0%

Missed 7.1% 15.0% 31.9% 53.8%
100% 100% 100% 100%

Subject model (total turns = 449)
cpp value

1 2 3 4

Correct 20.9% 18.3% 10.9% 6.5%
Classification Wrong 49.2% 31.2% 18.3% 9.8%

Missed 29.8% 50.5% 70.8% 83.7%
100% 100% 100% 100%

will generate turn-taking cues at the time point when the
final positive prediction has been received.
The objective evaluation of our model does not indicate

how correct it is from a user perspective. One motivation
behind turn-taking cues is to allow the conversation to con-
tinue smoothly even if we wrongly predict a turn end. In the
next section we describe a user experiment to evaluate this.

6 EXPERIMENT METHODOLOGY
The goal of our experiment is to test if our hybrid model
can improve an IPU-based model which only produces fast
responses. Participants watch videos of ERICA to compare
turn taking generated under different types of models. Al-
though a live interaction experiment is possible, there are
many unrelated factors we have to control for and we would
also need a robust conversational spoken dialogue system
which at this time is difficult to implement. In our experiment
we can simulate the different conditions while controlling
all other factors, including the content of the dialogue.

Turn-taking cues
First we designed turn-taking cues for ERICA to use in the
hybrid model. ERICA gazes to the left or right side of the
user’s head, with a 50% chance per side. Looking upwards is
also a gaze aversion behavior, but this is normally used when
considering an answer to a question [3], and our model will
not know the content of the user’s utterance. We assume
the user’s head is situated in front of ERICA at eye level.
To ensure that the gaze would be noticeable, we defined
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that ERICA shift her focus to a random point between 30-40
degrees horizontally and up to 5 degrees downwards from
her original gaze at the user. ERICA averts her gaze for up to
2500ms unless a response is needed, in which case she starts
to gaze back at the user 500ms after she starts speaking.
Choosing an appropriate filler is also crucial [2, 19]. Al-

though ERICA can generate many realistic-sounding fillers,
the continuousmodel does not know the content of the user’s
utterance. Therefore, a filler as an emotional response would
be unnatural for a simple question. We analyzed the lexical
form of turn-taking fillers (fillers used at the beginning of
turns) in our corpus according to categorizations in previous
work [12, 19]. The two most common were notice fillers (a
in Japanese) and proper fillers (etto in Japanese) comprising
about 50% and 20% of all turn-taking fillers, respectively. We
restricted filler usage to these two forms and chose fillers
which were neutral in tone. The eventual choice of filler is
based on a random distribution - a 67% chance of a notice
filler and a 33% chance of a proper filler.

Simulation of turn-taking models
We extracted corpus samples from our test set consisting of
one turn, followed by a response. The initial turn is spoken
by either the subject or operator. The response was said by
ERICA using synthesized text-to-speech, and the content of
the response was what was actually spoken in the corpus.
The continuous model used for evaluating a turn depended
on the speaker of the initial turn (subject or operator).

We included both correct and wrong (turn-taking cues are
generated more than 500ms before the end of a turn) samples
in our experiment, from both the operator and subject models
described in Section 5. We selected samples where the initial
turn was short, but the context could still be understood,
to prevent subject fatigue. We chose samples without cross-
talk such as backchannels. In total, we selected a total of 51
samples (24 correct and 27 wrong) for the experiment.

In our experiment we simulate the decision made with the
continuous model using the optimal cpp values defined in
Section 5. We use the test set as samples, so the time point
of the turn-taking cues is known precisely. For each sample
we generated three simulations corresponding to different
turn-taking models:

• IPU (baseline): The continuous model is not used and
ERICA only responds after the initial turn has ended.
After tests using our current system, an ASR result will
arrive approximately 700ms after the user has finished
speaking if we use an end-to-end model [28]. This
also assumes 100ms for IPU-based model processing.
Therefore, ERICA also generates her response 700ms
after the end of the initial turn.

• Gaze: If the decision is made to generate a turn-taking
cue, ERICAwill perform gaze aversion. 700ms after the
end of the initial turn, ERICA will generate a response.

• Gaze + Filler (G+F): If the decision is made to gener-
ate a turn-taking cue, ERICA will perform gaze aver-
sion and also produce a filler. To limit the number of
consecutive fillers, if a positive decision is found, ER-
ICA will only say a filler if five seconds or more have
passed before a previous filler has been said. She will
always do gaze aversion for a positive decision, regard-
less of whether a filler has been said or not. 700ms
after the end of the initial turn, ERICA will generate a
response. If a filler is being said then ERICA will wait
until the filler has been completed before speaking.

For simplification, we make some assumptions about the
simulation. We ignore continuous model processing and
response generation time and also assume the conversation
continues as in the corpus. There is no guarantee that this
will occur in a real situation, particularly for wrong samples.
We also assume that our IPU-based model can always detect
the end of the turn and therefore take it immediately, since
we need to determine if we can improve a perfect IPU model.

Experimental setup
We have samples from one of two scenarios (correct and
wrong) and one of three conditions (IPU,Gaze andG+F).We
evaluate each combination of these, resulting in six different
combinations which represent a scenario and evaluation pair.
Participants watched pairs of videos representing one of

the six different combinations. The videos showed ERICA
facing the camera at her eye level, representing the viewpoint
of the other speaker. Figure 5 shows a video screen shot.

Figure 5: Screen shot of sample video used in the experi-
ment.

The voice of the other speaker is played and ERICA re-
sponds according to the turn-taking model used as the con-
dition. Each video in a pair had the same content but used
different turn-taking models. Participants evaluated each
pair by answering three questions:
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Table 3: Fisher’s exact test for distributions of correct and
wrong samples.

Condition and measure p-value

IPU vs. Gaze - Timing 0.902
IPU vs. G+F - Timing 0.003
Gaze vs. G+F - Timing 0.000
IPU vs. Gaze - Interest 1.000
IPU vs. G+F - Interest 0.689
Gaze vs. G+F - Interest 0.808
IPU vs. Gaze - Human-like 0.612
IPU vs. G+F - Human-like 0.119
Gaze vs. G+F - Human-like 0.005

• In which video was the timing of ERICA’s responses
more appropriate?

• In which video did ERICA seem more interested in the
conversation?

• In which video was ERICA more human-like?

We recruited 29 participants (19 male, all students) for this
experiment. Participants were shown 30 video pairs (5 videos
for each of the 6 scenario and evaluation combinations). Each
pair of videos was generated in a random order and no video
was evaluated more than once. Left and right positions of
the videos on the screen were randomized.
We forced participants to make a choice between two

conditions. We could have included a neutral option but
we wanted them to consider the differences in conditions,
even if they were small. We could also have used Likert
scale measures, but we wanted to reduce the workload of
the participants, who would be watching many videos.

7 EXPERIMENT RESULTS
We conducted a binomial test to assess each turn-taking
model for both correct andwrong samples. Results are shown
in Figure 6.

For the timing of responses, both the Gaze and G+F mod-
els outperformed the IPU model for correct samples. The
G+Fmodel is much more preferred than the Gazemodel for
correct samples, but the reverse is true for wrong samples.
The G+F model was the best for showing ERICA’s interest,
outperforming the other two models over both scenarios. In
terms of the most human-like responses, theG+Fmodel also
outperformed the others. For wrong samples, there was no
difference between the Gaze and G+F models.
We also performed Fisher’s exact tests to test whether

there were differences between correct and wrong samples
for each comparison. Results are shown in Table 3.

We found the only significant differences were in the tim-
ing and human-like measures, where the G+F condition dif-
fered from IPU and Gaze. In all other comparisons, the dis-
tributions of answers were the same.
We were interested in videos evaluated as high or low

by most participants, particularly for wrong samples. The
context of the conversation seemed important. In several
wrong samples, the filler came after the speaker asked a
question or introduced a topic then continued talking to
elaborate on it. ERICA used a filler to show interest in the
utterance and the speaker continued talking, which made
the interruption seem quite natural. We also did not find
evidence in wrong samples that the timing was better if the
filler was produced closer to the actual end of turn.
The filler form could also have had some effect. One of

the lowest rated samples was a job interview interaction,
where the speaker asked ERICA to give a self-promotion.
The model produced a notice filler (ah) as an output, but this
is unnatural for ERICA’s role as an interviewee. A proper
filler or even no filler would have been more suitable.

8 ANALYSIS AND DISCUSSION
Overall, our proposed model was promising. We found that
when the continuous model is correct, the system is im-
proved if turn-taking cues are used. Building on previous
work [3, 26] we showed that gaze aversion improves per-
ceptions of the robot and also found that using both filler
and gaze aversion is effective. We can justify the use of fast
turn-taking using fillers. Even with incorrect predictions, the
hybrid model made ERICA seem more interested and was
more human-like than only producing a response as fast as
possible. We have now implemented the hybrid model in
ERICA and aim to evaluate it in a live setting.
Fisher tests showed that correctly identifying the end of

the turn made no difference to perceived interest in the
conversation. For the other measures, the G+F model is
perceived as worse when it gets the continuous prediction
wrong. In other words, using a filler is riskier than gaze
aversion, but more effective if the timing is correct. We also
observed that wrong samples which were perceived as hav-
ing good timing were ones where ERICA said fillers in the
middle of the turn and between the speaker’s clauses. This
effect made ERICA’s speech seem natural even though we
didn’t specifically train the model for this.

We have shown that our model performs well for isolated
turns, but do not know if this would be seen as useful in a
multi-turn full conversation. There are still a large number
of turns in which the model does not predict a TRP. Fillers
should be used sparingly, so the weak recall of the continuous
model may not be so problematic. However, gaze aversion
occurs more frequently so we have to improve our model if
we prefer to use this cue.
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Figure 6: Results of subjective experiment. Significant p-values are indicated by * (<0.05) and ** (<0.01).

We made several assumptions in our experiment, as ex-
plained in Section 6. Firstly we assume the speaker’s behavior
would not change if they observed the turn-taking cues. In
reality, the speaker may stop when they hear a filler in an-
ticipation of ERICA taking the turn. Secondly we assume
that our IPU-based model could always predict the actual
end of turn and so ERICA would respond quickly. In reality,
if the IPU-based model produces a false negative, then the
response would be either delayed or not said. Another condi-
tion can be tested - the continuous model correctly predicts
the end of the turn, but the IPU-based model misses the pre-
diction. This results in a delay between the turn-taking cues
and the response itself. Analysis of this condition needs to
be confirmed in a similar experiment.

9 CONCLUSION
In this paper we describe a hybrid model of turn-taking,
where a continuous model is used to generate turn-taking
cues for an android robot. Once an automatic speech recog-
nition result has been received, a separate IPU-based model
predicts the end of the turn based on the utterance itself. A
subjective experiment with this hybrid model showed that
users preferred it over a perfect IPU-only model, with bet-
ter perception of timing, interest in the conversation, and
human-likeness. The next step in our work is to implement
this in a live system and conduct a proper user evaluation.
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