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ABSTRACT
The task of identifying when to take a conversational turn is an
important function of spoken dialogue systems. The turn-taking
system should also ideally be able to handle many types of dialogue,
from structured conversation to spontaneous and unstructured
discourse. Our goal is to determine how much a generalized model
trained on many types of dialogue scenarios would improve on a
model trained only for a specific scenario. To achieve this goal we
created a large corpus of Wizard-of-Oz conversation data which
consisted of several different types of dialogue sessions, and then
compared a generalized model with scenario-specific models. For
our evaluation we go further than simply reporting conventional
metrics, which we show are not informative enough to evaluate
turn-taking in a real-time system. Instead, we process results using
a performance curve of latency and false cut-in rate, and further
improve our model’s real-time performance using a finite-state
turn-taking machine. Our results show that the generalized model
greatly outperformed the individual model for attentive listening
scenarios but was worse in job interview scenarios. This implies
that a model based on a large corpus is better suited to conversation
which is more user-initiated and unstructured. We also propose that
our method of evaluation leads to more informative performance
metrics in a real-time system.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); •Computingmethodologies→ Supervised learn-
ing by classification; Discourse, dialogue and pragmatics; • Gen-
eral and reference → Evaluation;
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1 INTRODUCTION
Spoken dialogue systems which are able to produce human-like
conversation are a major goal for researchers. One major challenge
is to be able to generate realistic mechanisms for turn-taking, which
regulates who will speak and when they will do so [23]. There is a
common goal of turn-taking for all languages to avoid overlaps in
speech and to minimize the gaps between speaking turns [20].

Methods such as push-to-talk andmagic words have been used in
smartphones and smart speakers to know when the system should
listen to the user. To determine if the user has ended their turn, a
common approach is to wait until they are silent for a period of time.
However, the context and task of the dialogue is also influential
for turn-taking [21] and the requirements of a suitable turn-taking
system will differ between a question-answering system and a
conversational chatbot. Turn-taking is of particular importance to
humanoid robots, because users will expect them to behave similar
to a real human. However, human-like natural turn-taking is still a
long way off in spoken dialogue systems.

Research in spoken dialogue systems has mainly addressed one
specific problem in turn-taking, which is determining if the user
has finished their speaking turn (commonly termed end-of-turn
detection). The danger of interrupting the user mid-turn means that
systems are often conservative and take a relatively long time to
respond to users. This might be acceptable for question-answering
systems, but for chat-like systems it means the interaction is not
smooth.

Several efforts have been done to improve end-of-turn detection
using various modalities such as prosody, linguistics, eye gaze and
even respiration [1, 3, 7–10, 13, 14, 19]. Both the types of corpora
and the results are varied. This means it is difficult to compare
results over different research. Furthermore, the evaluation method
in many of these papers is done using conventional metrics such
as precision, F1 score and accuracy, but does not fully reflect the
real-time capabilities of the system. This is a problem in turn-taking
research because we are interested in knowing how fast a system
can take to respond and the amount of errors it would generate.

We address this issue by proposing that conventional evaluation
metrics should also be supplemented with a performance curve
indicating average latency and false cut-in rate. This type of analysis
is not new, but is often missing in turn-taking research. Using this
metric, it is easier to estimate how well the system would perform
in real-time. We will then show that the systemmay be significantly
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improved when we use a finite-state turn-taking machine (FSTTM)
approach [16] as opposed to a conventional label-based approach,
if applied to a real-time system.

Once we have established this for evaluation, we use it to as-
sess how well a generalized model trained on a wide variety of
dialogues can improve on models which are trained only for a spe-
cific dialogue. Our hypothesis is that the pattern of turn-taking
differs according to the type of scenario. For example, in a formal
setting such as a job interview, the interviewee will strive not to
take long pauses during their turn, whereas for more casual and
spontaneous conversation this might be more acceptable. We pro-
pose that training a model which uses a range of conversational
scenarios is generally more powerful, but we want to know the
type of cases where it has the most benefit. We are not aware of
existing research which has compared models in this way.

In this work, we use deep learning methods to detect the end-of-
turn of the user using two modalities - acoustics and linguistics. We
evaluate both models separately and then construct a multi-modal
deep learning model which fuses the hidden states of both unimodal
models. As far as we know, combining deep learningmodels with an
FSTTM has not been done in previous work. Although some works
recognize latency and false cut-in rate as being valuable metrics,
they either only report one point on the performance curve [3], or
do not apply an FSTTM to their model [13].

In the next section we describe the corpus used and the data we
collected to train our models. Section 3 describes the deep learning
models in detail and we present our evaluation method and results
in Section 4 before a discussion and the conclusion of the paper. In
this work we use Japanese as the target language.

2 DATA COLLECTION
The corpus we use for our experiments is a collection of one-to-one
human-robot interaction sessions with the android robot ERICA.
ERICA is a highly realistic robot with the ability to create facial
expressions and lip synchronizations similar to a real human, and
also move her upper body to execute gestures. Our goal is for
ERICA to be able to autonomously engage in conversation using
behaviors that are indistinguishable from a real human. Since we
want to apply the turn-taking model to ERICA, we use her for our
experiments.

The setup was a typical Wizard-of-Oz experiment. The role of
ERICA was played by a hidden operator who is a voice actress.
We had four different operators play the part of ERICA over the
sessions. The operator’s room was hidden from the subject, but the
operator could see and hear the subject through cameras. For each
session we gave some basic instructions to the operators depending
on the scenario. The operators controlled ERICA’s head movements
through a hand-held controller, which triggered non-verbal behav-
iors such as nods. Figure 1 shows an example of the user interacting
with ERICA in a conversational scenario.

There was a total of 105 sessions, with users over a wide range
of ages and backgrounds. Each session had a particular scenario to
structure the conversation.

DATING (32 sessions) ERICA plays the role of a single
woman in a speed-dating simulation. The user talks about

Figure 1: A user in a conversational session with ERICA.

their personal interests and preferences with ERICA to try
to impress her.
INTERVIEW (30 sessions) ERICA is a job interviewerwith
the user as a candidate for a job.
LISTENING (20 sessions) ERICAmainly listens to the user
while they talk at length about a topic such as a memorable
trip. She occasionally responds with questions for the user
about their talk.
SECRETARY (19 sessions) ERICA is a university profes-
sor’s secretary. The user wishes to see the professor in their
office but they are currently away, so while they wait ERICA
and the user chat casually. ERICA first asks questions about
the user and then gives the user the chance to ask about
herself.
GUIDE (4 sessions) ERICA explains our laboratory to the
user.

We can see that there are a wide range of scenarios and styles
of conversation. For example, the job interview is well structured,
with ERICA only asking questions and the user responding to
them. Meanwhile, attentive listening is somewhat the opposite
case, with the user doing a large amount of talking and ERICA only
providing short responses and backchannels. The secretary and
dating scenarios are in the middle of these, with the conversation
being mixed-initiative. Our aim is to determine if a turn-taking
model can be generalized to handle all these scenarios, and whether
it is better performing thanmodels which are trained on one specific
type of dialogue.

The audio data collected from the sessions was captured by two
microphones. One was placed in the hidden booth of ERICA’s oper-
ator. The other was positioned between ERICA and the subject and
captured the latter’s voice. All sessions were transcribed including
notation for backchannels, laughter and fillers.

We extracted IPUs (inter-pausal units) from all sessions, regard-
less of speaker. An IPU was defined as a segment of speech which
did not contain a pause greater than 200ms. We labeled each IPU
as being within-turn (WT), where the next IPU was from the same
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Table 1: Corpus statistics

Dialogue scenarios
DATING INTERVIEW LISTENING SECRETARY ALL

Operator IPUs 4569 3195 2334 2067 13298
User IPUs 6595 3832 4563 1874 17011
Operator EOT% 42 26 38 26 32
User EOT % 33 21 21 28 27
Operator mean WT(s) - ms 568 570 539 580 553
User mean WT(s) - ms 620 543 600 497 582
Operator mean turn-grab time - ms 120 365 -34 206 140
User mean turn grab time - ms 55 334 0 170 109

Figure 2: An example of dialogue with IPU samples labeled
as within turn (black box) or end-of-turn (white solid box).
Backchannel IPUs (dashed box) are ignored.

speaker, or end-of-turn (EOT), where the next IPU was from the
other party. For simplification we ignored cases of barge-in. Figure
2 shows an example of the labeling process for turn-taking.

Statistics from the corpus are shown in Table 1, with approxi-
mately 30,000 samples being extracted from all sessions. 29.6% of
all samples were EOT. We note that this is a smaller percentage
than in previous research. In general, users paused within turns
more frequently than the operators. We also see some differences in
the various scenarios. For example, users paused more frequently
per turn in the LISTENING and INTERVIEW scenarios, but the
DATING scenario had the largest average pause length while it
was less than 500ms in the SECRETARY scenario. The time taken
for both the operator and subject to take the turn is also very short,
with many overlaps, particularly in the LISTENING scenario. This
result is about the same as real human communication [20].

3 NEURAL NETWORK MODELS
We constructed our prediction models using standard deep learning
methods. For our evaluation we implemented models which were
trained using only individual data from one of the four scenarios -
DATING, INTERVIEW,LISTENING and SECRETARY and also
trained models which used the entire data set.

Three models were trained for each of the individual data sets
and for the whole data set - two unimodal models for acoustic and
linguistic features and a fusion model which uses both modalities.
The same neural architecture was used for all models. A general
diagram of the architecture is shown in Figure 3.

The acoustic model used features extracted from each IPU. Ex-
traction was done using the HTK Speech Recognition Toolkit1 and

1http://htk.eng.cam.ac.uk/

Figure 3: General architecture of the neural network model
used.

we used 40 log mel-filter bank features in 10 ms intervals. We se-
lected these features as they are the same as we use for ERICA’s
speech recognition, and so can be easily integrated into the live
system. Interestingly, unlike other works, adding prosodic features
of power and pitch did not improve the model. This could be due
to the fact that the microphone used in the data collection is not
located as close to the speaker as in other settings. We trained the
data using a 3-layer stacked LSTM model for training. The size of
each hidden layer of the LSTM was 128 and all implemented a 20%
dropout rate. We found that using the final 500ms of the IPU was
sufficient, rather than using the acoustic features of the entire IPU.

The linguistic model was based on the transcripts used over the
sessions. We note that this is not the ideal approach, because the
ASR system could provide different outputs than the transcripts. We
tried two different Japanese word tokenizers, MeCab2 and JUMAN3

and found that the former had the better results. Word embedding
was conducted using Word2Vec [15] on the tokenizations with a
dimension of 100. Tokens which did not have a word embedding
were given a random vector with values uniformly distributed
between -0.25 to 0.25, which has been used in previous work [11].

2http://taku910.github.io/mecab/
3http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN
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The word embeddings were then used as input for a 3-layer stacked
LSTM model. Like the acoustic model, the linguistic model had
hidden layers of size 128 with dropout of 20%.

The fusion model concatenated the final hidden states of the
acoustic and linguistic models. This type of pooling approach for
similar features has been implemented in previous works [2, 12].
This concatenated layer was then used as input for a final neural
network with just one hidden layer with a size of 256 and a dropout
rate of 20%. For this model we used ReLU activation functions.

One notable observation in our fusion model is that weight ini-
tialization was done using He’s algorithm [6]. We found that using
random truncated weights caused our model to become extremely
confident in prediction, with most probabilities very close to one or
zero. This is not suitable for our FSTTM approach, which requires
probabilities to be somewhat close to a representation of confidence
in prediction. This type of phenomena of overconfident models has
been previously observed, with possible countermeasures including
temperature scaling [4].

We used two different approaches to train the fusion model. In
the first approach, we trained all models separately, and stored the
final hidden states of the training set. We then trained the fusion
model using these states as inputs. In the second approach, we
trained all models at the same time. This meant that the fusion
model was trained using the hidden states for every training epoch.
The difference is that the fusion model sees a larger variety of
samples, but sees many samples only once, because the hidden
states for the unimodal models will change over each epoch. We
found that the latter approach gave the best results.

Data was split by session, with a 60:20:20 split used for training,
validation and testing. For the generalized model, the sessions of the
test data matched the distribution of the entire sample. We found
no improvement when balancing the samples, since the absolute
number of samples in each class was sufficiently large. We trained
over 50 epochs and used the model with highest F1 macro score
on the validation set as the test model. Since we ran the models
simultaneously we can train all three at once on the same data to
make a proper comparison.

4 EVALUATION
We first demonstrate the effectiveness of FSTTM using the latency
vs. false cut-in metric and train a generalized fusion model on all
the corpus data. Next, we compare scenario-specific models trained
with all corpus data to those trained on only the individual scenario.
Although we trained using both the operator and speaker’s IPUs,
in order to increase the amount of training data we only test on the
user’s IPUs since this is the task in the actual system.

We also note that our claims about evaluation in this section are
restricted to the class of models which classify IPUs in an event-
wise manner. Continuous turn-taking models which predict the
next speaker also exist and have a different decision function [5, 19],
but comparisons with these models are outside the scope of this
work.

4.1 Measuring turn-taking performance
The performance of turn-taking can be measured using conven-
tional metrics such as precision, recall, F1 score and accuracy, and

this has been done in many previous works. These metrics can be
used to compare models on the same dataset. They also imply a
binary prediction - take the turn or wait for the user to finish.

However, if only these metrics are used to evaluate turn-taking
models, they are not fully informative in terms of system perfor-
mance. For turn-taking, we can also evaluate a model by its perfor-
mance across two dimensions - average latency (time to take the
turn after the user has finished) and false-cut in rate (the rate at
which the user is interrupted during their turn). Optimizing these
dimensions will reduce the time between speaking turns and min-
imize overlap, which is a fundamental goal of turn-taking and is
done rapidly in mixed-initiative human conversation [18, 20].

Our corpus also shows turn-grabbing times similar to real human
communication. An important point here is that achieving these
times are practically impossible since we require a silence of at
least 200ms to detect an IPU in addition to any signal processing,
while the time between speakers is often less than that. This is the
major weakness of event-based prediction as opposed to continuous
predictionmodels.We simplify our analysis so that processing times
are ignored, but our conclusions remain applicable.

We make the following assumption that for a fixed cut-in rate,
the better turn-taking model is the one which has the lowest average
latency. We propose that this evaluation is better because it is
more relevant to live systems where there is generally a trade-off
between the two dimensions. Furthermore, the model should have
multiple points at which the dimensions can be assessed, and so
evaluation should be done through by analyzing a performance
curve constructed using these dimensions.

A naive model will simply define a time x as the amount of
silence to wait for from the user before taking a turn. Although this
model is trivial to implement, we can imagine that if x is sufficiently
large, then it scores well under conventional metrics since it only
takes the turn when the user is very likely to have finished their
turn. However, for a real-time system this is impractical since the
user has to wait a long time for any system responses.

Given a prediction model, we can estimate its latency and false
cut-in performance through a label-based approach where we use
the model’s label prediction to decide whether to take the turn or
wait. Since we have no other information, we assume the decision
is taken immediately. However, we still have the problem of decid-
ing x because if our model predicts a false negative (the system
wrongly predicts the end-of-turn), the system will stay silent until
the user speaks again. By setting x we cannot then guarantee that
a prediction labeled negative is correct, because the system can still
potentially cut in. This means that conventional metrics are not
fully representative of actual performance in a real-time system.

Another approach is to use a finite-state turn-taking machine
(FSTTM), introduced by Raux and Eskenazi [16, 17]. Details of
the model can be referred to in the papers, but we will provide a
brief summary below. In this approach, there are costs associated
with grabbing the turn or waiting (C(Grab |Ot ) and C(Wait |Ot ),
respectively). If we define τ as the current length of a pause in ms
(the amount of time with no voice activity from the user), then the
following formulas are applied:

C(Grab |Ot ) = (1 − P(F |Ot )) ∗Cд
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Table 2: Conventional metrics for end-of-turn detection in
combined scenario models.

Model Precision Recall F1 F1 macro Accuracy

Baseline 0.295 0.295 0.295 0.500 0.584
Acoustic 0.652 0.409 0.503 0.675 0.766
Linguistic 0.684 0.508 0.583 0.721 0.790
Fusion 0.686 0.521 0.592 0.726 0.792

C(Wait |Ot ) = P(F |Ot ) ∗Cw (τ )

where Cд and Cw (τ ) are grab and wait coefficients and P(F |Ot )

is the probability that the floor is open given the observations at
time t . Using Bayes rule, P(F |Ot ) is calculated using the formula:

P(F |O)

P(d ≥ τ |O,U ) ∗ (1 − P(F |O)) + P(F |O)

where P(F |O) is the probability of the end of the user’s turn
given by the model and P(d ≥ τ |O,U ) is a function of mean pause
duration which follows an exponential distribution. In this case, the
parameter for the distribution can be calculated from the corpus.

As τ increases, the wait cost increases while the grab cost de-
creases. Eventually, when the wait cost exceeds the grab cost, the
system makes the decision to take the turn. Unlike the label-based
approach, FSTTM uses the probabilistic output of the model to de-
cide when the turn should be taken, not if the turn should be taken.
A higher probability of end-of-turn given by the model results in
less silence needed before the grab action is taken. This approach
removes the need to try to estimate a good value of x . Instead,
the parameter to be adjusted is a coefficient to weight the cost of
grabbing the turn, Cд . Although this method of decision-making is
useful, it seems that few researchers apply FSTTM to their models,
even though it greatly improves real-time system performance.

The performance curve has another key advantage, in that we
know the performance of different levels of x or Cд . This becomes
necessary if we have some benchmark we wish to compare (e.g. a
false cut-in rate of less than 10%) or if we want to adjust the length
of the response according to the user. We can easily visualize the
performance for various parameterizations.

In this work, we will show that latency vs. false cut-in perfor-
mance curves should be used when analyzing turn-taking because
it is more indicative of the “true” performance of a model intended
to be used in real-time. We will also show that a model which uses a
traditional label-based approach to making the turn-taking decision
may perform worse than one which uses an FSTTM to decide when
to take the turn.

4.2 Evaluation of generalized model
We first begin by conventionally evaluating three models in the
combined scenarios for end-of-turn detection - acoustic only, lin-
guistic only, and the fusion model. Results are shown in Table 2.
The fusion model is the best performing model but only by a slight
amount over the linguistic model. The baseline model randomly
selects EOT or WOT with the probability according to the corpus
distribution. To demonstrate the effectiveness of FSTTM, we draw

performance curves of average latency (l ) and false cut-in rate (f c)
through the following equations:

l =
m∑
i=1

t(EOTi )/m

f c = (

n∑
i=1

WTi = f c/n) ∗ 100

where t(EOTi ) is the time taken for a ground truth end-of-turn
sample i to be responded to by the system, andWTi = f c is a binary
value which denotes if a ground truth WT sample i is incorrectly
predicted. Variables m and n are the number of EOT and WOT
samples respectively.

The baseline is the silence threshold model described in Section
4.1. To draw the performance curve we calculate average latency
and false cut-in rate for various values of user silence threshold x
ms using all our test samples. The value t(WTi ) indicates the length
of time after a WT sample after which the user began to speak
again, which we calculated from our corpus. For each EOT and WT,
we calculate latency and false cut-in respectively as follows:

t(EOTi ) = x

WTi = f c if t(WTi ) > x

Next we evaluate our trained fusion prediction model. The first
type of evaluation is the label-based approach. Again, we calculate
the metrics using various values of x . Recall that in the label-based
approach, the system takes the turn straight away if the model
predicts to do so, else it waits until x ms have passed. The value
y indicates the minimum amount of time for IPU detection after
which a decision will be made. We fix y as 200ms for our evaluation.
In practice, we use a fast end-to-end speech recognition system
so this value is reasonable [22], but for other speech recognition
systems this value will be higher. In any case, comparisons can still
be made since a larger value of y will only reduce the rate of false
cut-ins for all models. The equations of the label-based approach
are:

t(EOTi ) =

{
y, if correctly predicted
x, otherwise{

WTi = f c if incorrectly predicted
WTi = f c if correctly predicted and t(WTi ) > x

Finally, we calculate the FSTTM for the fusion model. In this
case, we are not adjusting x but the cost coefficient of grabbing
the turn (Cд ). For simplicity we fix the coefficient of waiting (Cw )
to the amount of user silence time. We denote z as the time when
C(Grab |Ot ) > C(Wait |Ot ) for a sample i . Therefore, to determine
a false cut-in we can simply check if the system would have taken
the turn before t(WTi ) ms had passed.

t(EOTi ) = z

WTi = f c if t(WTi ) < z

We can see the performance curves in Figure 4. Models with
a performance curve closer to the lower left-corner of the graph
are better. The FSTTM outperforms the baseline and label-based
approach at smaller false cut-in rates. Interestingly, the label-based
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Table 3: Average latencies at fixed false cut-in rates for com-
bined scenario fusion model. Values are in ms.

False cut-in rate
Model 20% 15% 10% 5%

Baseline 816 940 1133 1511
Label-based 581 724 N/A N/A
FSTTM 611 729 917 1208

Figure 4: Comparison of label-based and FSTTM approaches
for generalized (combined scenario) fusion model.

approach becomes worse than the baseline after a certain latency.
We note that as x becomes large, the label-based approach will
eventually level off because it can only increase latency but not
improve the rate of false cut-ins, since these are due to the system
having to make a hard decision even for incorrect predictions. Our
results confirm that FSTTM is the best approach for making the real-
time turn-taking decision, given that we have used the exact same
model for the label-based and FSTTM approaches.We can also show
results in terms of the latencies at various levels of false cut-in rate,
as in Table 3. From our previous discussion, we note that smaller
latencies are better given a fixed false cut-in threshold. Using an
FSTTM approach cuts the latency of turn-taking by approximately
20% from the baseline while maintaining the same false cut-in rate.

Based on this result, all models will be evaluated using FSTTM.
Furthermore, we report average latencies and false cut-in rate for
comparison purposes as in Tables 4 and 5.

4.3 Evaluation of scenario models
We now evaluate the models trained on only a particular scenario.
The acoustic, linguistic, and fusion model results for each scenario
are shown in Table 4. Notice that the baseline values are markedly
different for each scenario.

Firstly we note that in every scenario, the fusion model was
better than the unimodal models, except SECRETARY, where the
individual acoustic model was slightly better. Acoustic-only models

Table 4: Average latencies vs. false cut-ins formodels trained
on individual scenarios. Values are in ms.

False cut-in rate
DATING 20% 15% 10% 5%

Baseline 888 1051 1284 1731
Acoustic-only 820 1036 1302 N/A
Linguistic-only 878 1023 1226 N/A
Fusion 776 958 1185 N/A

INTERVIEW 20% 15% 10% 5%

Baseline 706 815 966 1313
Acoustic-only 290 348 451 824
Linguistic-only 613 709 930 1262
Fusion 270 330 401 692

LISTENING 20% 15% 10% 5%

Baseline 854 964 1133 1462
Acoustic-only 962 1106 1246 N/A
Linguistic-only 1026 1116 1232 1585
Fusion 929 1048 1188 1484

SECRETARY 20% 15% 10% 5%

Baseline 723 830 979 1286
Acoustic-only 573 647 744 987
Linguistic-only 716 782 846 1206
Fusion 552 648 769 994

Table 5: Comparison of best individual model and best com-
bined scenario model. Values are in ms.

False cut-in rate
DATING 20% 15% 10% 5%

Individual-fusion 776 958 1185 N/A
Combined-fusion 691 845 1011 N/A
Improvement 85 113 174 N/A

INTERVIEW 20% 15% 10% 5%

Individual-fusion 270 330 401 692
Combined-fusion 501 613 755 1029
Improvement -231 -283 -354 -337

LISTENING 20% 15% 10% 5%

Individual-fusion 929 1048 1188 1484
Combined-fusion 650 773 960 1235
Improvement 279 275 228 249

SECRETARY 20% 15% 10% 5%

Individual-acoustic 573 647 744 987
Combined-fusion 459 534 694 979
Improvement 114 113 50 8
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Figure 5: Comparison of best individual model with combined fusion for each scenario.

generally seem to outperform linguistic-only models. This could be
because the training of the word embeddings uses a smaller subset
of data than the combined scenario models.

We also observe that all models outperformed the baseline, ex-
cept for the LISTENING scenario, where they were all worse. Our
hypothesis is that this is due to the unstructured nature of attentive
listening dialogue.We require muchmore variation in samples, both
acoustically and linguistically, and this variation is not sufficient
when only attentive listening scenarios are used for training.

Next, we compared the combined-fusion model with the best
individual model in each scenario, to determine if training on the
whole dataset produces a better model than training on a specific
scenario. The results are shown in Table 5 and performance curves
for each scenario are shown in Figure 5.

We see that there exists some variation in the improvement of
the combined model over each scenario. For example, in the IN-
TERVIEW scenario, the individual model is clearly better. On the
other hand, for the DATING scenario, the combined model im-
proves performance and in the LISTENING scenario the combined

model is able to better the baseline, which couldn’t be achieved
with the individual fusion model.

The extent of improvement of the combined model appears to
be somewhat related to the style of dialogue. The improvement is
greatest in the LISTENING scenario, where most of the dialogue
initiative is provided by the user. On the hand, in the INTERVIEW
scenario, the dialogue is more structured and language more formal,
with the user mostly answering standard questions. The DATING
and SECRETARY scenarios are somewhat in between.

4.4 Effects of weighted samples
Up until now, we have assumed that false cut-in rate and average
latency are equally important. In a live system we may want to
modify this assumption. For example, it is likely that the user will
tolerate an extra 100ms of latency if the false cut-in rate can be
reduced by 10%. One approach could be to simply adjust the grab
coefficientCд for our existing models. Another approach is to train
the model to heavily penalize false positives (WT samples which
are labeled as EOT), to reduce the false cut-in rate.
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Figure 6: Comparison of generalized models using weighted
andunweighted samples. The unweightedmodel is the same
as in Figure 4

We trained another generalized fusion model using weighted
cross-entropy to increase the loss on false positives, with a weight
coefficient of 10. We again trained over 50 epochs, but only tested
with themodel with the highest precision for end-of-turn prediction.
Naturally, our model had very high precision (0.92) but the F1 macro
score was barely above the baseline. We compared its performance
curve to the unweighted sample model as shown in Figure 6.

The unweighted model is in general still better performing. How-
ever, it reaches a limit at around 1400ms where neither latency nor
false cut-in rate will change even by increasing Cu . The weighted
model is still able to decrease false cut-in rate past this point in
time, and at around 1800ms average latency, the false cut-in rate is
approximately 2%. Intuitively, this makes sense, because the model
is more conservative, with the ability to wait longer to reduce the
number of false cut-ins.We can also observe this phenomenon in the
SECRETARY scenario. It would appear that increasing precision
has the effect of being able to increase the limit of the performance
curve, allowing for longer average latency times.

Although we have demonstrated model evaluation from a quan-
titative perspective, we do not know how significant these results
are according to a subjective evaluation. We expect that users will
notice false cut-ins much more than a small decrease in latency, so
being able to tune the model to a desired rate of interruptions is a
useful property of FSTTM.

5 DISCUSSION
In this work, we emphasize two important points in terms of model
evaluation. Firstly, the latency vs. false cut-off performance curve is
the more informative way to evaluate turn-taking models. Secondly,
using an FSTTM can greatly improve a model in terms of this metric.
We showed that using a label-based approach as implied by only
reporting conventional metrics was not suitable in the context of a
real-time system. We encourage future research on turn-taking to
use performance curves.

We also found that the type of dialogue task used for turn-taking
influences model performance. An interview-type task appears to
be the easiest, while a listening-style scenario was more difficult.
We found that for the listening scenario, using a wide variety of data
greatly improved the model. This suggests that a generalized model
would be better suited for unstructured, informal conversation.
On the other hand, a job interview has less variation in terms of
dialogue and structure, and so it seems including other types of
dialogue as training data makes the model too generalized, leading
to lower performance. Unstructured tasks such as attentive listening
should be explored further, as question-answering type systems
have been the focus of a large amount of work on turn-taking.

There are several issues with the construction of our models. We
used simple architectures and pooling strategies, but there are many
hyperparameter combinations that may have improved the models.
Our method of pooling through concatenating hidden states was
quite basic, and there may be better ways to fully harness both
models. We also did not test our models with techniques such as
attention or pre-training using auto-encoders. These are all issues
which we are able to address in the future.

One aspect touched upon previously was the overconfidence of
deep learning models. If the FSTTM approach is to be used, then
for evaluation purposes an overconfident model reduces to a label-
based approach. We therefore recommend that when using deep
learning models, this overconfidence be addressed in some way
through calibration. In our case, using different weight initializa-
tions was helpful, but the optimal approach is dependent on the
type of network used. This result also means that models which
score higher under conventional metrics are not necessarily better
than ones which score lower but are calibrated correctly.

6 CONCLUSION
In this work we evaluated turn-taking models for a conversational
robot by training with acoustic and linguistic features over several
types of scenarios. Our goal was to assess how well a generalized
model could improve upon a model trained for a specific scenario.
Themethod of evaluationwas also critical in ourwork.We proposed
that conventional metrics such as precision and F1 score cannot
satisfactorily measure the true real-time performance of turn-taking
models and a performance curve assessing average latency and false
cut-in should be constructed. Due to this, a finite-state turn-taking
machine is able to improve the model by using probabilistic values
rather than labels for decision making.

We used an LSTM-based approach together with concatenation
pooling to train the models. Our results showed that a generalized
turn-taking model could improve all scenarios except for the job
interview. It was most effective at improving the attentive listening
scenario. We propose that a generalized turn-taking model is more
suited for unstructured, informal conversation. The next step in
our work is to integrate these models into a humanoid robot and
perform evaluations in a live scenario.
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