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ABSTRACT
In this work we propose a listening agent which can be used in
a conversation between two humans. We firstly conduct a corpus
analysis to identify three different categories of backchannel which
the agent can use - responsive interjections, expressive interjections
and shared laughs. From this data we train and evaluate a continu-
ous backchannel generation model consisting of separate timing
and form prediction models. We then conduct a subjective experi-
ment to compare our model to random, dyadic, and ground truth
models. We find that our model outperforms a random baseline and
is comparable to the dyadic model despite the low evaluation of
expressive interjections. We suggest that the perception of expres-
sive interjections contribute significantly to the perception of the
agent’s empathy and understanding of the conversation. The results
also show the need for a more robust model to generate expressive
interjections, perhaps aided by the use of linguistic features.

CCS CONCEPTS
• Computing methodologies→ Discourse, dialogue and prag-
matics; • Human-centered computing→ Human computer in-
teraction (HCI).
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1 INTRODUCTION
Recent conversational agents have become more sophisticated,
largely through advances in deep learning models for natural lan-
guage processing [2, 21, 28]. While these advances allow the agent
to become a better speaker, contributing to the conversation as a
listener is arguably just as important. One way to do this is to give
the agent the ability to produce appropriate backchannels as listen-
ing behavior. In this work we focus on verbal backchannels which
include (in English) hmm, yeah and uh-huh - short lexical tokens
which do not interrupt the speaker but react to the conversation.

While backchannels have been mostly implemented in agents
which engage in dyadic conversation [6, 11, 24], the same phe-
nomena should be addressed in group conversations, particularly
with the use of online platforms to facilitate multiparty chatting.
A conversation with multiple speakers may be more difficult to
parse for an agent due to speech recognition and natural language
processing issues involved with overlapping talk. However, it may
still be possible for the agent to contribute as a listener, providing
appropriate feedback to the conversation without taking any turns.
The agent should participate in a conversation between two or
more humans by providing attentive backchannel feedback.

In this work we implement such an agent which has a role
as a listener during a talk between two human participants. The
agent uses only the prosodic audio information of the speakers
(i.e. no speech recognition) and so can function in real-time with
little latency. The agent generates backchannels throughout the
conversation according to a trained model. Although our agent is
implemented in the context of a radio show and is not embodied,
we propose it can also be integrated in embodied agents and robots
for situated group conversation. In this work the target language is
Japanese. Figure 1 shows the overall concept.

This paper contains several research contributions. Firstly, in
Section 3 we analyze a corpus of radio show sessions with a third
party listener to identify appropriate backchannel categories which
can be used by the agent. We then train and evaluate a continuous
backchannel generation model in Section 4 which provides us with
an objective performance metric.

In addition to the objective evaluation, we also conduct a listen-
ing experiment in Section 5 where the proposed agent is compared
to others in terms of subjects’ perceptions of its empathy and under-
standing, both important features for agents [12, 17]. Subjects also
directly evaluate each individually generated backchannel, giving
an insight into how the rating of a single backchannel contributes
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Table 1: Categorizations of third party backchannels in the initial corpus based on Den et al. [5]

Category Function Examples (including English) Proportion(%)

Responsive interjections Show acceptance of another utterance un, unun, hai (mm, mmhmm, yeah) 22.2
Expressive interjections Expresses admiration, surprise disap-

pointment etc. elicited by another ut-
terance

u-n, o-, a- (huh, wow, aah) 26.3

Repetitions Repeating a portion of what another
participant has said to express under-
standing or agreement

A: otagai issho dattane -> B: issho dayo
(A: do it together -> B: together)

11.2

Shared laughs Laughing with another participant - 11.8
Other Backchannels which don’t fit into one

of the above categories
honto desu ka (really?) 28.4

Figure 1: Concept of multiparty backchannel system

to a user’s overall perception of an agent. The paper then concludes
with a discussion and future directions.

2 RELATEDWORK
Backchannel prediction, both verbal and non-verbal, has received
much attention in order to make listener behavior of an agent more
humanlike [10, 16, 23, 25, 26]. Integration of these systems into
intelligent agents has also been implemented in several works, with
special care needed to regulate their frequency, timing and type
[4, 20]. Well-known examples of these include Sensitive Artificial
Listeners [24] and SimSensei [6].

Features used to make predictions are often prosodic as low la-
tency is preferable for real-time implementation, however these
can differ according to language. For example, Ward and Tsuka-
hara [26] found low pitch to be a robust predictor for Japanese
backchannels rather than simply waiting for silence, while Truong
et al. [25] found that the duration of a pause is important for Dutch
conversation. Advances in speech recognition has meant that word
embeddings have also been explored [19, 22]. Backchannel predic-
tion is not only about timing, but the morphological form of the
backchannel [20]. For Japanese, this type of prediction has been

attempted in several works [1, 3, 11, 13, 27], however results are
still modest (F-score around 0.5), showing the difficulty of this task.

Furthermore, while much research focuses on prediction in a
dyadic context, our work will predict backchannels in a multiparty
conversation, where the agent acts as a third party listener rather
than an active speaker. Although multiparty listener behavior has
been analyzed in terms of gaze and nodding [9, 14], we could only
find one work which implemented verbal backchanneling in a mul-
tiparty context [18]. In this work, a rule-based backchannel model
using gaze information was implemented, although was not inde-
pendently evaluated.

In our work, we train a model for Japanese verbal backchan-
nelling in a multiparty context, which has not yet being addressed.
Although it is possible to simply use existing dyadic models, it is
also known that dialogue behaviors change depending on group
size [7] and similarly prosodic rules in dyadic models may differ in
multiparty chat. In this work we investigate this by directly com-
paring our model to one trained on dyadic conversation. Further-
more, we argue that user perception of backchannels is required for
model evaluation, since the timing and form of backchannels is not
an objective truth. Many works provide only objective measures
as evaluation. We also provide a rigorous analysis of subjective
data in which not only the overall conversation but the individual
backchannels themselves are assessed. As far as we know this type
of analysis has not been conducted in any previous work.

3 DATA COLLECTION AND ANALYSIS
We considered data collection in the context of the agent imple-
mentation. Although it would have been possible to use three-way
conversations, our target agent does not play the role of a speaker,
and so using data where a third party acts as both speaker and
a listener would not align with this. However we do not have a
public corpus with a third party only speaking in backchannels. To
deal with this issue we made the decision to augment conversation
(a radio show), with a third party listening to two speakers. Al-
though this is a limitation, we argue that data that we gather would
better reflect the intended role of the listening agent, which uses
backchannels but does not directly intervene in the conversation.

In this work we use data from a public radio show with two
young female radio hosts. The show consists of light-hearted casual
chatting between the hosts on various topics. A third party listener,
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Table 2: Distribution of categorical forms and tokens in the
second corpus

Category Frequency Percentage (%)

Responsive tokens 1147 45.9
un 488 19.5
hai 222 8.9

un un 151 6.0
un un un 118 4.7

ha-i 72 2.9
other 96 3.8

Expressive tokens 908 36.3
u-n 234 9.4
ne- 168 6.7
a- 106 4.2
he- 85 3.4
o- 80 3.2
e- 37 1.5

other 198 7.9
Shared laughs 444 17.8

Total 2499 100.0

also female, was recorded responding while listening to the pre-
recorded sessions. This person obviously could not interact with
the radio hosts so they were restricted to reacting to what was
being said rather than adding information to the conversation. A
total of 17 data sessions were analyzed, with an average length of
258 seconds each. Our goal of this initial corpus analysis is to only
identify the major types of backchannels used by the third party
listener, which will then be implemented for our agent. In Section
4 we will use different sessions for the actual model training.

There were a total of 1185 transcribed utterances, which we
annotated and categorized. We used previous literature on Japanese
backchannels [1, 5, 26] to identify four major categories - responsive
interjections (responsives), expressive interjections (expressives),
repetitions and shared laughter. Other types of utterances for which
the category was not clear were labeled as “Other”. Although it is
possible to break down the backchannels into a larger number of
categories, this would make model training more difficult. Table 1
shows the categories, their function, and some examples.

After consideration of the agent model, we decided to omit the
repetition category, since we do not have reliable speech recogni-
tion. Therefore the three target categories of backchannel used in
our listener agent are responsives, expressives and shared laughter,
comprising of approximately 60% of all backchannels used by the
third party listener. Responsives act as an indication that the lis-
tener is attending to the conversation while expressives are more
emotional, indicating surprise or interest in what has been said.
Their use is more dependent on the context of the conversation.

4 MODEL IMPLEMENTATION
The results from our data collection motivate us to train a model
to classify three main categories of backchannels for our listener
agent: responsives, expressives and laughs.

4.1 Training data
Although we could use the same radio sessions in the previous
section to train the model, 40% of the utterances used in the data
were not covered by the three categories. We decided to create a
second corpus of 24 sessions where the third party listener uses
only the three target categories of utterances. The sessions in this
corpus are all different from the previous one. Another third party
listener undertook the same task as described previously, except
they were instructed to only use backchannels which fell under
one of the three target categories. An example dialogue (English
translation) was as follows:

Host A it’s a banana wrapped in something like sponge
Host B oh yeah like sponge
Listener wow (expressive)
Listener i see (responsive)
Host B you mean actual sponge
Host A ah right laugh
Listener laugh (shared laugh)
Table 2 shows the distribution of the target categories and indi-

vidual backchannels in this second corpus. Interestingly, this corpus
contained a greater number of responsives than expressives, the
opposite of the initial corpus. One explanation for this could be
that when given restrictions on the utterances which can be used,
the third party listener opted for responsive backchannels as they
could be applied to a variety of situations without being inappropri-
ate. The distribution of these backchannels also differs from other
analyses of dyadic conversations in Japanese [15, 26]. We note the
high frequency of “other” expressives. Most of these backchannels
appear less than three times in the entire corpus.

We also assume that backchannels within the responsive cate-
gory aremore interchangeable than those in the expressive category.
For example, replacing un with un un in most cases changes the
semantics slightly but does not feel inappropriate. On the other
hand, for expressives such an exchange might result in unnatu-
ral listening behavior. We can imagine in English that “huh” and
“wow” are not readily interchangeable because they have different
meanings. This has implications for our subjective experiment.

4.2 Model architecture
One major consideration when designing our agent model was
how to predict both the timing and the categorical form of the
backchannel. We had two options. The first option is to predict
both timing and form together. This uses four classes (the three
target categories plus a silence class) with the model making a
decision based on one continuous prediction. The second option
is to use a dual model approach as shown in Figure 2 - a binary
model which first predicts if a backchannel is used and, if positive, a
3-class model which then predicts which backchannel form should
be generated. We tested both these architectures and found that the
second approach was more favorable as the first approach suffered
from class imbalance which negatively affected its performance.

4.3 Labeling and features
Before the model training we carefully considered the type of fea-
tures to be used, in particular whether to include linguistic features.
Our intention is for the model to be usable in a real world context
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Figure 2: Dual model architecture used for prediction of
backchannel timing and form

so we cannot assume speech recognition for both parties is always
available. In fact, the training data itself is only a single combined
channel with both speakers. We should also not assume that speech
recognition will be accurate, particularly since the radio show con-
tains much informal language with disfluencies and interruptions.
Furthermore, using linguistic features assumes that backchannels
are made in reaction to an utterance. However, from our data we
observed that backchannels often occur within speech and before
an utterance has been completed. An obvious example is shared
laughs, where it makes little sense to wait until the other party has
concluded their laugh utterance before responding.

Given these limitations and the need for the performance of the
final model to fairly reflect the training environment, we decided
to omit linguistic features in this work, although they would ar-
guably improve the model if used. On the other hand, our model is
lightweight, only requiring one channel of streaming audio data
and voice activity of each speaker to be functional in real-time.

Figure 3 summarizes the labeling and feature windows. If we con-
sider positive labels at only the time point at which the backchannel
is uttered, there will be a massive class imbalance. Therefore we
used a labeling window where all time points within 500ms before
and after the beginning of the backchannel are positive. For all
time points within this labeling window, the training samples for
the timing model will be positive and used for the form model,
labeled as the corresponding form category. Occasionally these
timepoints may overlap with multiple labeling windows if different
backchannel forms were uttered quickly one after the other.

For a particular timepoint, we extract a feature set of prosodic
information using a pitch extractor [8]. These features are taken
from feature windows with lengths of 100ms, 200ms, 500ms and
1000ms directly before the timepoint. Audio data within them is
sampled every 10ms. For each window we calculate these features:

• median pitch and power
• percentage of the window which is voiced (i.e. contains a
pitch)

• percentage of silence from both radio hosts

This gives us 5 features over 4 feature windows, or 20 features
per training sample. In our data collection environment, pitch and
power information is a single combined audio channel of both
hosts, which simplifies the model. We estimate the voice activity
information of each individual host through transcripts to extract
the percentage of silence, though voice activity detection can also
be achieved in real-time.

Table 3: Performance of timing prediction model

Model Precision Recall F-Score

Random baseline 0.299 0.299 0.299
Proposed model 0.393 0.601 0.475

Table 4: Performance of form prediction model. The bottom
table reports macro scores compared to the baseline.

Class % Precision Recall F-Score

Responsives 0.462 0.598 0.724 0.655
Expressives 0.369 0.462 0.249 0.324
Shared laughs 0.169 0.433 0.620 0.510

Model Precision Recall F-Score

Random baseline 0.333 0.333 0.333
Proposed model 0.498 0.531 0.496

4.4 Model performance
We used the above samples to train logistic regression models as
the machine learning classifiers. Deep learning techniques such
as RNNs were also tried, but were found to not improve perfor-
mance. We assigned each of the 24 sessions as a fold and trained the
models using leave-one-out cross-validation. Predictions for the
timing model were made every 50ms for a total of 165,795 samples.
Predictions for the form model were only considered if the ground
truth label was classified as being a backchannel, with a total of
48,481 samples used. We compared both timing and form models
to a random baseline which uses the class distribution to make the
prediction. Results are shown in Tables 3 and 4.

The proposed timing model outperforms the baseline, although
the F-score is still modest. However, this may still be reasonable
considering that the assessment is made against continuous time
points. For the form model, responsives and shared laughs are
classified reasonably well, however expressives are classified at
no better than the baseline rate, specifically the low recall score.
Despite this, the whole model does outperform the baseline.

The major caveat when assessing the performance of this model
is that although we use the“ground truth” for the correct labels, it
is not completely objective. A different person will almost certainly
speak with different timings and backchannel forms. Therefore a
subjective experiment is needed to assess the model’s real perfor-
mance according to human listeners.

4.5 Backchannel generation
The model as it is does not have any decision-making processes on
when the agent should actually speak and only makes predictions
every 50ms. It is inappropriate to have the agent speak at the first
positive prediction as this could be an outlying false positive. There-
fore we designed two decision-making heuristics to regulate the
agent backchannels. The first is the number of consecutive positive
predictions which must be received before the agent generates the
backchannel. We set this to 5 predictions (250ms), meaning that
the agent will only use an utterance if the timing model receives 5
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Figure 3: Overview of labeling and feature extraction.

consecutive positive predictions and the form predictions are all
from the same category. The other heuristic is the amount of time
to wait between backchannels, which we set at 1000ms so the agent
does not use them too frequently.

We must also make a decision about which specific utterances
within each form category to use. In this work a text-to-speech
(TTS) system generates these utterances. Since no other informa-
tion is available, we simply choose the utterance within the form
category at random based on the corpus distribution presented in
Table 2. It should also be noted that each utterance (and laughs)
has several TTS variations. For example the utterance un has varia-
tions with slightly different pitches. These are selected at random
to ensure the agent’s utterances do not become monotonous.

5 SUBJECTIVE EVALUATION
We conducted an experiment to assess the subjective performance
of our proposed model (Proposed) in comparison to three other
models. All use the same TTS system:

• Random: A model which generates backchannels with ran-
dom timing according to the distribution used for the binary
model and random form according to the distribution in
Table 2. The beginning of an agent’s utterance occurs at a
minimum of 1500ms before the start of the next one.

• Dyadic: A backchannel model we implemented in previous
research [11] which was trained on dyadic conversations
and only for responsive forms. We use this as a comparison
because it represents a robust but conservative type of model
which is used for more common dyadic interactions. Since
it only uses responsives any errors will arguably be not as
critical as a model which incorrectly uses expressives.

• Ground Truth: A model in which the actual utterances
recorded from the human third party listener are directly
replaced with utterances generated by the TTS system.

5.1 Sample generation
We created audio samples for the experiment by using the models
to generate agent utterances for every session and used segments
as experiment samples based on the following criteria:

• The first agent backchannel does not begin within the first
four seconds of the sample, to give the subject some initial
context to the conversation

• The length of the sample is less than 30 seconds in length
• The number of backchannels generated within the sample is
between 4 and 8

• For the proposed model, the sample must contain at least
one of every form.

These criteria were designed to allow the subject to listen to
the conversation and each of the backchannels in context to help
them best evaluate it. Additionally, we wanted the subjects to listen
to as many different samples as possible so tried to restrict the
length of them. It was not possible to have subjects listen to the
same segment generated with different models, since there were
few segments where every condition met all the criteria. Instead,
we ensured every sample was non-overlapping and only treated
with a single condition. In total we generated 101 total samples -
30 proposed, 20 random, 27 dyadic and 24 ground truth.

5.2 Procedure
We designed software which allowed subjects to listen to an audio
sample while rating each backchannel. The software displayed the
agent backchannels on an audio timeline (so subjects were aware
when the agent would speak) and subjects marked each backchan-
nel as being appropriate, somewhat appropriate or inappropriate
as a direct evaluation. They also rated the sample overall for mea-
sures of empathy and understanding with the questions “In this
recording, how much did you feel that the system showed [empa-
thy/understanding]?”. These ratings were done on a 5-point Likert
scale.
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A total of 33 subjects participated in the experiment, 14 female,
all university students. The subjects listened to 32 samples in total -
8 from each condition. The selection of samples for each condition
was random as was the order they were presented. Subjects could
listen to the samples as many times as they wished.

6 EXPERIMENT RESULTS AND ANALYSIS
We conducted three types of analysis of the subjective ratings from
the experiment. Firstly, we analyze the ratings of each individual
backchannel in the samples. Then we analyze the samples’ overall
ratings of empathy and understanding. Finally, we link the two by
analyzing how individual backchannels influence the overall rating.

6.1 Individual backchannel appropriateness
Individual backchannels were given one of three ratings - inap-
propriate, somewhat appropriate and appropriate. We calculated
the percentage of backchannels for each of these ratings accord-
ing to model type and form category. Chi-square tests of indepen-
dence were also calculated for each pair of model types. These tests
showed significant differences for every pair of distributions except
one - expressives in the proposed and random models. Figure 4
displays these graphs.

As expected, the ground truth model was the best performing
overall. However approximately 10% of the backchannels were still
deemed to be inappropriate. The main contribution of this is the
expressives, in which about 20% of backchannels generated with the
ground truth model were inappropriate. Furthermore, only about
half the backchannels were deemed appropriate, suggesting that
subjects rated expressives more harshly.

The proposed model outperformed the random and dyadic mod-
els in terms of the overall percentage of appropriate backchannels.
When compared to the dyadic model, it received a greater propor-
tion of both appropriate and inappropriate responsives. For expres-
sives it was no better than the random model, with only around
20% of this type of backchannel being deemed to be appropriate.
The best performing form category was laughter, with over 80% of
laughs being rated as appropriate. In general laughter backchannels
were rated high by subjects, with even 50% of the random model
laughter backchannels receiving an appropriate rating.

6.2 Empathy and understanding
For each sample, subjects also evaluated the overall empathy and
understanding of the system on a Likert scale from 1 (lowest) to 5.
Every subject rated 8 samples from each of the four conditions. We
show the distribution of ratings in Figure 5.

We note the relative infrequency of “neutral" opinions (i.e. Likert
scale rating of 3), showing that subjects tended to have an opinion
on whether a sample showed empathy and understanding. The
ground truth model performed the best while the random model
performed the worst. Samples generated by the proposed model
were generally rated better or equal to the dyadic model samples.

We further analyzed the results in terms of the percentage of
samples where the ratings of empathy and understanding were
“positive" (4 or 5) or “negative" (1 or 2), shown in Table 5.

Figure 4: Percentage of backchannel ratings according to
model type for each form category

The proposed model is slightly better than the dyadic model,
although the difference is modest. It is also noticeable that in gen-
eral subjects rated understanding lower than empathy except for
the ground truth model. This perhaps indicates that creating a

119



Backchannel Generation Model for a Third Party Listener Agent HAI ’22, December 5–8, 2022, Christchurch, New Zealand

Figure 5: Frequency distribution of Likert scale ratings for
empathy (top) and understanding (bottom)

Table 5: Percentage of samples with positive and negative
ratings

Empathy Understanding

Model Positive Negative Positive Negative
Random 31.1 47.8 25.4 60.2
Dyadic 43.2 36.4 37.5 48.9
Proposed 51.9 35.2 43.6 38.3
Ground truth 72.0 19.3 77.2 17.4

backchannel model that shows understanding is more difficult than
creating an empathic one.

We also performed a subject-targeted boxplot analysis. For each
condition, every empathy and understanding score was averaged
across the 8 samples that each subject listened to. These averages
per session were compared to each other using an ANOVA test
which was found to be significantly different (p < 0.001). We then
performed Mann-Whitney post-hoc tests to compare each group,
with a Bonferroni corrections used for multiple comparisons. Re-
sults are shown in Figure 6.

For both empathy and understanding, the proposed model was
not significantly different than the dyadic model, although the
median average rating was higher. Medians were slightly lower in
understanding than empathy, except for the ground truth model.

Although our model outperformed the random baseline, it is still
on par with the dyadic model. When considering the reasons for
this, the obvious conclusion is that the relatively poor performance

Figure 6: Boxplots of mean averages of empathy (top) and
understanding (bottom) for a session. ** shows p ≤ 0.05.

in generating expressive backchannels has a negative effect on the
proposed model. It performed about the same as a random one in
terms of the rating of expressives. However, it also suggests that the
negative influence of expressives is counterbalanced by the better
performance of responsive backchannels and laughs, which allowed
it to outperform the random model overall. The next section looks
a little deeper into these relationships.

6.3 Odds ratio analysis
We wanted to further understand how the ratings of individual
backchannels contributed to the empathy and understanding rat-
ings of the samples. More specifically, if a subject rates a backchan-
nel as being appropriate (or inappropriate) how much does this
increase (or decrease) the likelihood that they will also rate empathy
and understanding higher?

For this purpose we trained ordinal logistic regression (OLR)
models, since we have a natural ordering of Likert scale data. The
input variables were the total number of inappropriate, somewhat
appropriate and appropriate ratings for each sample, with the out-
put variable being the rating of empathy or understanding. We
omitted data of the dyadic model since this did not contain expres-
sives or shared laughs. This provided us with a total of 792 samples
to train the models. The overall prediction accuracy for the 5-class
model was 55.7% for understanding and 52.1% for empathy.

The exponential of the coefficients of the OLR models can be
used to provide an odds ratio for all categories of backchannel or
each individual form category. Put simply, the model gives the odds
that the empathy or understanding rating will increase for each
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type of backchannel rating (inappropriate, somewhat appropriate
and appropriate). If this odds ratio is close to one, it suggests that
an increase in the specific rating of the backchannel has little effect
on empathy or understanding. Figure 7 displays the results.

Figure 7: Odds ratio analysis for metrics of empathy (top)
and understanding (bottom)

When considering all backchannels, one which is rated appro-
priate increases the likelihood of increasing the empathy and un-
derstanding score by around 50-100%. Conversely, a backchannel
that is rated inappropriate reduces the likelihood of this by around
50-65%. For empathy there is little difference between inappropriate
and somewhat appropriate backchannels, but there is a difference
between these two for the empathy metric.

For backchannels in individual form categories, we see that there
are no striking differences. There is a suggestion that an inappropri-
ate expressive affects the metrics more than inappropriate respon-
sives and laughs, but is not statistically significant. One interpre-
tation is that using inappropriate expressives is less conservative
and more noticeable to participants.

There is a suggestion that there is little effect of a somewhat
appropriate laugh on understanding. One possible interpretation
is that using laughs which are not completely appropriate does
not show a lack of understanding, rather that subjects thought the
system might simply be showing general enthusiasm.

7 DISCUSSION
In this paper we trained and implemented a third party listening
agent and tested it in both objective and subjective experiments.
Our proposed agent model could outperform a random baseline,
was comparable to a dyadic model which only used responsive

interjections, but was still far from a ground truth model. This
paper has highlighted the importance and difficulty of expressive
interjections as backchannels. Ourmodel did not perform any better
than random at generating these, and even in the ground truth
model expressives were the worst performing.

In order to generate a more robust model for expressives, it is
clear that using only a prosodic approach has limits. In this work
we were interested in creating a real-time model with low latency
and without speech recognition, so we restricted ourselves to using
continuous features. However, including linguistic features and
natural language understanding techniques would have to be the
next goal for correctly classifying expressives. Our future plan is
to better classify expressives using linguistic approaches, while
maintaining the continuous aspect of the model. The use of low-
latency incremental speech recognition is required here.

On the other hand we also found that the dyadic model which
only generates responsives is still quite useful. Using only respon-
sives in Japanese seems to have some effect on the perception of the
agent. However we do not know if we have reached a limit in the
model’s effectiveness. If this is the case, then adding more variety to
the backchannels (i.e. expressives and laughter) would improve the
model, as long as we can guarantee that these backchannels could
be robustly generated. For our proposed model, the improvement
from increased variety and performance of laughter prediction were
counteracted by weak expressive prediction. This resulted in it not
significantly outperforming the dyadic model.

There are several limitations to this work. As discussed, the data
we used does not actually have the third party listener interacting
with the other two participants in the conversation. This could have
a large effect, particularly when we consider the different dynamics
of dyadic and multiparty conversations. We do not know how this
model will scale up with three or more humans since we use individ-
ual voice activity information. Although we only used information
from one audio channel, we might improve performance by using
prosodic features from individual speakers. Furthermore, training
sessions used the same female radio hosts and third party speakers.

8 CONCLUSION
This paper presented a third party listener agent which generates
backchannels during a conversation between two human partic-
ipants. We trained the model based on a corpus which identified
three different categories of backchannel - responsives, expressives
and laughs and predicts backchannel timing and form category.
We conducted a subjective experiment to compare the model with
three others and found our agent model could outperform a base-
line model but was not significantly different than a dyadic model
which only used responsive backchannels. Our analysis showed that
although our model could reasonably predict laughs and respon-
sives, its performance was degraded by relatively poor expressive
prediction. We conclude that robustly predicting and generating
expressive backchannels needs to be investigated further.
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