Detection of social signals for recognizing engagement in human-robot interaction

Divesh Lala, Koji Inoue, Pierrick Milhorat and Tatsuya Kawahara
Graduate School of Informatics, Sakyo-ku
Kyoto University
Kyoto, Japan

Abstract

Detection of engagement during a conversation is an impor-
tant function of human-robot interaction. The level of user
engagement can influence the dialogue strategy of the robot.
Our motivation in this work is to detect several behaviors
which will be used as social signal inputs for a real-time en-
gagement recognition model. These behaviors are nodding,
laughter, verbal backchannels and eye gaze. We describe
models of these behaviors which have been learned from a
large corpus of human-robot interactions with the android
robot ERICA. Input data to the models comes from a Kinect
sensor and a microphone array. Using our engagement recog-
nition model, we can achieve reasonable performance using
the inputs from automatic social signal detection, compared
to using manual annotation as input.

Introduction

Human conversation makes use of a range of non-verbal so-
cial signals, which provide additional information about the
internal state of the parties involved. Conversational robots
should be able to recognize such signals. By doing this, they
can control their behavior and dialogue to provide more nat-
ural communication with humans.

We assume that some social signals are used to indicate
the engagement of a user. Engagement has been described
as the process of establishing, maintaining an interaction
(Sidner et al. 2005) or, more concretely, how interested and
attentive they are towards a conversation (Yu, Aoki, and
Woodruff 2004). One major goal is to keep the user engaged
in a conversation. Therefore, if the robot is able to detect a
change in the engagement level of the user, we can formulate
a dialogue strategy to make or keep them engaged, thereby
improving the user experience. For example, the robot may
choose to continue or discontinue the current topic of con-
versation depending on how engaged it perceives the user to
be. This type of scenario motivates the work in this paper.

While engagement cannot be measured directly, we can
infer it by observing a number of social signals. In this
paper, we discuss four of these - nodding, laughter, ver-
bal backchannels, and eye gaze. These have been identi-
fied in other works as being indicative of the engagement
level of the user (Rich et al. 2010; Xu, Li, and Wang 2013;
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Figure 1: An overview of the architecture of the engagement
recognition system.

Oertel et al. 2015). The general architecture of our engage-
ment system is shown in Figure 1. We use Kinect and a mi-
crophone array as sensors in our system. Our objective in
this paper is to implement models which detect the social
signals in real-time so that they can be used as inputs to the
engagement recognition model.

The robot which we use for this work is ERICA, a spe-
cially designed android who is a young Japanese woman
(Glas et al. 2016). Our long-term goal is for ERICA to inter-
act with humans in the real world. She has a human-like ap-
pearance and over 20 motors in her face which generate life-
like facial movements for speech and emotion expression.
ERICA can be tele-operated by another human, but we in-
tend for her to be completely autonomous with the ability to
recognize and respond appropriately to natural speech. Cur-



rently ERICA is integrated with a speech recognition system
and a module to track the subject’s body movements. We use
these sensors to train our social signal recognition models.

We expect that ERICA’s realism will elicit humans to in-
teract with her as if she is a real human. In previous stud-
ies we have developed ERICA’s dialogue system (Lala et al.
2017; Milhorat et al. 2017), but have not considered the state
of the user. We are now integrating engagement recognition
into ERICA’s architecture. Our approach in this work is to
create a large corpus and annotate social signals related to
engagement during interactions with her. The signals occur
within a human-robot conversation but are natural behaviors
seen in the real world. We then use this data to train social
signal detection models for the engagement recognizer. We
then compare the performance of the engagement recogni-
tion model when using the detection models with manual
annotation as input.

Related Work

Tracking user engagement for agent interaction has been an
active area of research (Rich et al. 2010; Forbes-Riley and
Litman 2012; Yu et al. 2016; 2017). The general approach
is to discover what types of social signals are related to en-
gagement and then create a model which can measure the
engagement level of the user. This is often a binary or cate-
gorical classification (Bednarik, Eivazi, and Hradis 2012).

The ability to recognize engagement in the user can influ-
ence the conversation. Previous works have found that en-
gagement is related to turn-taking (Xu, Li, and Wang 2013;
Inoue et al. 2016). There has also been an implementation
of an agent which modifies its dialogue strategy according
to the engagement level of the user (Yu et al. 2016). We in-
tend for ERICA to be used in a number of conversational
scenarios such as interviewing, so the ability to detect the
engagement level of the user is crucial to maintain a positive
interaction.

We must first detect the relevant social signals which in-
dicate engagement. There have been numerous works which
detail these behaviors and apply them to agents and robots.
They include facial expressions (Castellano et al. 2009;
Yu et al. 2017), posture (Sanghvi et al. 2011), conversational
phenomena (Rich et al. 2010; Xu, Li, and Wang 2013) as
well as the four social signals which we investigate in this
work. Typically the models to recognize social signals are
trained using machine learning techniques.

Our goal is to extend the research by not only recogniz-
ing social signals but creating the engagement recognition
model itself. We propose a hierarchical Bayesian model.
Rather than arbitrarily choosing which social signals are
needed, we conducted an experiment to determine which are
relevant as judged by multiple third party observers of an in-
teraction (Inoue et al. 2016). This is a similar approach to
a recent work (Oertel et al. 2015), where the engagement
model is directly learned from the results of the annotation.
Our model also considers the latent character of the observer
as an underlying variable to accommodate for differing per-
sonalities. In this work we describe the detection of the so-
cial signals provided as a result of our experiment.

Figure 2: ERICA participating in a conversation with a user.

Data Collection

We created our own corpus to collect the input data for train-
ing. The corpus consists of 91 conversational sessions be-
tween a human subject and ERICA. Each session lasted be-
tween 5 and 20 minutes. An image of the scenario is shown
in Figure 2. Note the Kinect sensor to the right of ERICA
and the vase on the table which is actually a microphone
array.

In the conversation scenario, ERICA plays the role of a
secretary for a laboratory in a university. The subjects arrive
at the lab with the intention of talking to the professor, who
is temporarily absent. ERICA informs the subject of this fact
and while they are waiting begins a conversation. The top-
ics of conversation varied and included the subject’s hobbies
and interests, life as a student, and their thoughts on android
robots. ERICA asked and answered questions about herself
according to rough guidelines set out before the experiment.

ERICA was controlled by a female operator in a remote,
hidden location. During the sessions we used six different
operators. All were professional voice actors. The subjects
heard the operator’s speech, which was also used to move
ERICA’s lips and mouth in a natural manner (Sakai et al.
2015). The operator could also control ERICA’s head move-
ments through the use of controllers.

We recorded several streams of data for the conversational
sessions. These included multiple perspectives of video, au-
dio channels of both ERICA and the subject, and motion
capture data from a Kinect sensor which was located next to
ERICA. The relevant data from the Kinect sensor is the yaw,
roll and pitch values of the head captured at 30 Hz, relative
to the Kinect sensor. We use several microphones to capture
separate audio channels of ERICA and the user. Kinect and
audio were synchronized.

To create a ground truth of the data, annotators watched
videos of the sessions and marked the beginning and end
points of each target behavior. We only consider behaviors
which occurred during ERCIA’s conversational turn. Due to
the time taken to annotate the sessions, we do not use all of
them when training the behavior models. Furthermore, the
data used to train each of the behaviors are not necessarily



consistent across all the models. This is because different
annotators were responsible for different types of behavior
and so worked independently on the sessions.

Selection of Engagement-related Behaviors

Previously we conducted an experiment in which multiple
third-party annotators watched the sessions of interaction
and identified the behaviors which accompany a change in
perceived engagement (Inoue et al. 2016). The outcome of
this experiment was that nodding, laughter, verbal backchan-
nels, and eye gaze were commonly chosen by the annota-
tors as being indicative of engagement. The annotation of
engagement was inconsistent among the third-party annota-
tors, so we also modeled the character of the annotator as a
latent variable. Our experiment also showed that facial ex-
pression was also important, but because this is more diffi-
cult to annotate, we omit it from our model.

We focus on engagement as being a function of the be-
haviors of the human in their role as a listener. In our system
we have three main tasks. The first is to measure behaviors
of the user during the system’s speaking turn, which is the
focus of this work. Secondly, we estimate their level of en-
gagement based on the previously mentioned behaviors us-
ing a hierarchical Bayesian model. Thirdly, we choose the
robot’s dialogue strategy for her next turn based on the en-
gagement level. This is to be considered in the near future.

The type of classification for each behavior is slightly dif-
ferent. Nodding is detected continuously as soon as new
output from the Kinect sensor is received. Laughter and
backchannel detection is detected whenever a new inter-
pausal unit (IPU) is said by the user. In the live system, this
IPU is an output of the Japanese automatic speech recog-
nition (ASR) system Julius (Lee, Kawahara, and Shikano
2001). Eye gaze is detected per speaker turn.

The integrated system can recognize the engagement level
during the system’s speaking turn. The only required hard-
ware is a Kinect sensor and a microphone array to imple-
ment this system, so we expect that it can be used for other
conversational robots. In the next sections we will describe
the behavioral models and their performances in detail.

Nodding

Nodding is often used as a backchannel by the listener, par-
ticularly in Japanese conversations (Maynard 1987; Han-
zawa 2012). Nodding was also identified by annotators as
being indicative of engagement. Several nodding detection
algorithms have been implemented in previous works us-
ing machine learning methods such as hidden Markov mod-
els, support vector machines and hidden conditional random
fields (Fujie et al. 2004; Morency et al. 2005; Wang et al.
2006). We used a long short-term memory (LSTM) network
(Hochreiter and Schmidhuber 1997) for the head nodding
model, which can be readily applied to gesture recognition
(Ordéiiez and Roggen 2016).

Input to this model consists of a sequence of frames from
the Kinect sensor. The LSTM was constructed using Ten-
sorflow using a GPU on a desktop computer. From prelimi-
nary trials we found that using a sequence of 30 frames (ap-

proximately 300ms of data) was suitable for training. For
each frame we calculated 7 features. The most basic of these
were the instantaneous speeds of the yaw, roll and pitch of
the head. We also included features related only to the head
pitch over the previous 15 frames. These were the average
speed, average velocity, acceleration and range. To classify
a sequence as a nod, we observe whether the final frame in
the sequence is within the range of a nod in the ground truth
annotation.

We used an LSTM with 16 nodes, a learning rate of
0.001 and equally weighted samples. The mini-batch size
was fixed at 32 samples. Every five epochs we measured the
error on the validation set to determine early stopping. This
epoch was then used as a parameter for evaluating the test
set.

Median | IQR
Listener turns per session 38 8.5
Length of listener turns (s) 4.89 | 7.03
Nods per session 31 | 30.5
Length of nods (s) 0.74 | 0.50

Table 1: Statistics of the 19 conversation sessions used for
the nodding model. Distributions are highly skewed so we
report the median and inter-quartile range (IQR).

Due to the large amount of data and time to do the anno-
tation, we used only 19 sessions in this work. Table 1 dis-
plays general statistics about the subset of the corpus. We
extracted 27,360 samples from the corpus, with 3,152 sam-
ples in the nodding class (approximately 11.5% of the total).
We performed 10-fold cross-validation across 19 sessions,
with each fold consisting of two sessions for testing and two
sessions for validation, except for one fold which contained
only one session each for validation and testing.

We compared our model to a baseline model which al-
ways predicts the positive class, a support vector machine
(SVM) with a radial basis kernel, a single hidden layer neu-
ral network and a deep neural network (DNN) with two hid-
den layers. We used the same features as the LSTM, but
combined them in one input vector with size 210 (30 frames
x 7 features). The neural network and DNN used the same
learning rate and mini-batch size as the LSTM. The number
of nodes of the hidden layers in the neural network and DNN
were 128.

We performed a frame-wise evaluation of the models.
The performance across all test sets for the positive class
is shown in Table 2.

Nodding Model Prec. | Rec. | F1 Acc.

Baseline 0.115 | 1.000 | 0.206 | 0.796
Neural network 0.482 | 0.411 | 0.444 | 0.881
SVM (radial basis) | 0.424 | 0.542 | 0.475 | 0.863
DNN 0.511 | 0.516 | 0.514 | 0.887
LSTM 0.566 | 0.589 | 0.577 | 0.901

Table 2: Performance of frame-wise nodding detection mod-
els.



For frame-wise detection, the LSTM approach outper-
forms the other models over all metrics. We also evaluated
the models by detecting nodding sequences rather than in-
dividual frames. We set a minimum length of a nodding se-
quence [, and only label a nod if it is continuously detected
as such for longer than [ milliseconds, to reject short, iso-
lated sequences of nods. If a detected nod sequence from
the model overlaps with a ground truth nod sequence, then
we label it as correct. We evaluated various values of [ and
found that setting this value to 300ms was optimal for all the
models. Results are shown in Table 3.

Nodding Model Prec. | Rec. | F1

Neural network 0.551 | 0.581 | 0.566
SVM (radial basis) | 0.550 | 0.638 | 0.591
DNN 0.553 | 0.687 | 0.613
LSTM 0.608 | 0.763 | 0.677

Table 3: Performance of event-wise nodding detection mod-
els.

We again find that the LSTM is the best performing model
and that event-wise detection is better than frame-wise de-
tection.

Laughter

Some works have used smiling to detect engagement
(Castellano et al. 2009; Yu et al. 2017). Smiling in general
displays a positive feeling toward the agent and so it is nat-
ural that this would indicate engagement. However, reliably
recognizing smiles would require us to integrate a camera
into our system. As a proxy, we hypothesize that laugh-
ter also indicates engagement. Furthermore, this was also
confirmed by the third party annotators in our experiment.
For these reasons we opt to build a system that can detect
laughter, making use of the microphone array that is already
used by the system. Automatic laughter detection is a well-
researched topic (Cosentino, Sessa, and Takanishi 2016).

We constructed a binary classifier to detect whether or
not a given IPU contains laughter. For each IPU, we ex-
tracted prosodic and linguistic features. We use the duration
and the voiced-unvoiced intensity ratio of the IPU plus six
features related to its pitch and the intensity (the mean, me-
dian, slope, minimum, maximum and range), giving a total
of 14 prosodic features. For linguistic features, we include
the classifications of the previous 5 IPUs, a normalized word
representation of previous utterances provided by Word2Vec
(Mikolov et al. 2013), and part of speech tags provided by
JUMAN++ (Morita, Kawahara, and Kurohashi 2015). A to-
tal of 55 linguistic features are used.

We classified an IPU as containing laughter whether it
occurred in isolation or as part of an utterance. We used
46 sessions of the corpus to test the laughter detection sys-
tem. Our corpus contained 9,320 IPUs, with the percentage
of laughter samples being 6.3%. Cross-validation was per-
formed leaving one session out for each fold. We tested var-
ious models and found that a two-layer DNN had the best
performance.

Results of the laughter detection model are shown in Table
4. We compare two type of models to the baseline. The first
uses only prosodic features, while the second adds linguistic
information based on the transcription of the corpus.

Model Prec. | Rec. | F1 Acc.

Baseline 0.063 | 1.000 | 0.119 | 0.882
Prosody only 0.343 | 0.222 | 0.269 | 0.927
Prosody + linguistic | 0.587 | 0.455 | 0.513 | 0.947

Table 4: Performance of laughter detection models.

The addition of linguistic features improves the perfor-
mance of the model, because of transcriptions such as “ha-
haha” which explicitly represent laughter. However, we can-
not guarantee that an ASR system would successfully gen-
erate the same output as the transcription. In this case, a
prosodic-only model provides an alternative solution. We
acknowledge that the inclusion of other spectral features
would considerably improve the model.

Verbal backchannels

Backchannels are short responses to the speaker during a
conversation, such as mm and uh-huh in English or un and
ee in Japanese, where they are termed aizuchi. These occur
more frequently in Japanese than in English and are often
accompanied by head movements (Ike 2010). Backchannels
have been addressed in several works as being an indicator
of engagement (Rich et al. 2010; Oertel et al. 2015) and con-
firmed as being so by annotators in our experiment.

Our goal is to create a model which can effectively rec-
ognize backchannels during the robot’s speaking turn. Al-
though our main task is to use the results of this recog-
nition for our engagement model, it is also useful to clas-
sify backchannels because the system should distinguish
them from situations where the user is actually starting their
speaking turn or trying to barge-in during her speech.

We again use IPUs as an input and construct a binary
classifier to determine if an IPU is a backchannel or not.
We used the same sessions for training as the laughter de-
tection model. 26.2% of samples were classified as verbal
backchannels. We also used the same features as the laugh-
ter detection model and found that the best model was a ran-
dom forest with 56 estimators. Table 5 shows the results of
backchannel detection. As with laughter detection, we com-
pared the model with and without linguistic features.

Model Prec. | Rec. | F1 Acc.

Baseline 0.262 | 1.000 | 0.415 | 0.613
Prosody only 0.818 | 0.745 | 0.780 | 0.887
Prosody + linguistic | 0.909 | 0.926 | 0.918 | 0.955

Table 5: Performance of backchannel detection models.

We again see that linguistic features improve the perfor-
mance of the model. This is expected as backchannels have
several common lexical forms. However, even using only



prosodic features the model still has a reasonable F1 score
so we do not need to rely on a correct ASR output.

Eye gaze
Eye gaze behavior has been identified in previous research as
indicative of engagement (Nakano and Ishii 2010; Rich et al.
2010) and the annotators in our experiment confirmed this.
We consider that the most important aspect of the user’s eye
gaze is that they are looking at ERICA while she is speaking.

Although eye-gaze models using computer vision tech-
niques have been developed in previous work (Sewell and
Komogortsev 2010; Zhang et al. 2015), we opted to use a
simpler geometry-based method with the Kinect sensor. We
define the 3-d world co-ordinates of ERICA and the Kinect
sensor’s position, and can receive the vector of the head ori-
entation provided by the Kinect sensor. We first transform
this orientation into world co-ordinates so that we have a
vector whose origin and direction are the user’s head and
head orientation. We then use collision detection to check for
intersections between the vector and a 30cm sphere around
ERICA’s head. This is to accommodate for the measurement
of head orientation rather than actual eye gaze. If there is an
intersection, we label it as looking at ERICA.

From our experiment we found that the highest inter-
annotator agreement of engagement (Spearman’s correlation
coefficient of 0.375) was when the subject gazed at ER-
ICA continuously for 10 seconds during her speaking turn.
Therefore, we use this rule as a basis for the eye gaze input.
Turns of less than 10 seconds long were classified as neg-
ative according to the eye gaze model. We manually anno-
tated a ground truth of eye gaze through visual observation
then labelled the turn according to the 10 second rule. We
then generated labels according the output of our eye gaze
model. The number of turns which were labeled as positive
(the user gazed at ERICA for at least 10 seconds continu-
ously) was 17.1% of the total. The model was tested using
20 sessions of data and results are shown in Table 6.

Model Prec. | Rec. | F1 Acc.
Baseline 0.171 | 1.000 | 0.292 | 0.716
Gaze model | 0.504 | 0.580 | 0.539 | 0.847

Table 6: Performance of eye gaze detection model.

We find that the model works reasonably well for clas-
sifying continuous gaze behavior. However we could only
estimate the positions of ERICA’s head and the Kinect sen-
sor in our corpus by observing the video. In the live system
we calculate these values exactly, so we expect that the per-
formance of the model will be improved from this result.

Engagement Recognition

We have described four different social signals for and their
recognition models. The performance of the models is var-
ied, but our goal is not to produce state-of-the-art individual
models, but to assess whether they can be used in conjunc-
tion with our engagement recognition model. This is a hi-
erarchical Bayesian binary classifier, predicting if a listener

is engaged or not during the system’s speaking turn. The
graphical model is shown in Figure 3.

For our evaluation we selected 20 sessions from our cor-
pus which were a different subset than those used to train
the individual social signal models. We recruited 12 third-
party observers to watch video of these sessions and anno-
tate time-points where they perceived the engagement of the
subject was changed to high. We defined engagement for
the annotators as “How much the subject is interested in and
willing to continue the current dialogue with ERICA”. The
annotator variable is represented by ¢ in our graphical model.

The input to the model, z, is a state which is defined as
the observed combination of social signals during a turn.
Each social signal can be classified as a binary value (either
detected or not detected), giving 16 possible combinations.
When training the model we know this combination, but in a
live system we marginalize over each behavior combination
using its prior probability.

We also define a variable k, which represents a specific
character type of an annotator. For example, laughter may be
influential for one character type but not so important for an-
other. Therefore, annotators with different characters would
perceive laughter differently in terms of perceived engage-
ment. We created a distribution of characters for each anno-
tator and found that they could be grouped by similar char-
acter. From our experiments we found that including a char-
acter variable improved the model’s performance and that
the best model had three different character types (K = 3).

KxL

brr }—B,y

& : observation
K : #characters
L : #behavior combination states

J sessions
assigned
I annotators annotators(f) v 1‘\{, turns
—] . o 7 - |
e L
+ T
. f 7 < /
- - 7
- - s ’ I
(character]  (perceived engagement) (behavior combination state)

Figure 3: Graphical model of engagement recognizer

For brevity, we omit details of most of the calculations
used in our model. The posterior probability of perceived
engagement is

K
p(yitlxtaiaé7é) = Zéikq;kzt (1)
k=1

where z; is the observed behavior combination for a sys-
tem turn, ¢ is the index of the annotator, and © and @ are the
learned parameters of the latent character model. 8;;, is the
probability that an annotator ¢ has a character £, and ¢, is
the probability that the behavior combination z; is perceived
as engaged by k.



We compared the performance of our engagement model
under two conditions - using manually annotated data as in-
puts and using the results of our social signal detection mod-
els as inputs. Engagement is classified per the robot’s speak-
ing turn. We also analyze the model according to whether
it uses contextual information. This means the result of en-
gagement in the system’s previous turn is used as a fea-
ture for classifying engagement in her current turn. We use
the area under the precision-recall curve (AUC) as a perfor-
mance measure. The results are shown in Table 7.

Labeling method | No context | Context
Manual annotation 0.650 0.669
Detection system 0.615 0.620

Table 7: AUC scores for the engagement model using man-
ual annotation and our social signal detection models.

From our results we see a drop in performance of the en-
gagement model when using social signal detection com-
pared to manual annotation, but is not drastic. We also see
that adding contextual information provides an improvement
in performance. We can also show that even though the indi-
vidual models do not all have high recognition ability, their
combination is adequate for engagement recognition.

Discussion

We find that the individual social signal models have vary-
ing levels of performance. Laughter detection is quite poor,
while backchannel detection is considerably better. To im-
prove the performance of our recognition systems, we could
add other modalities as in other works (Morency et al. 2005).
In particular, the co-gesture of verbal backchannels and nod-
ding could help to improve both systems. Similarly, visual
recognition of laughing would improve the results of laugh-
ter detection. We are trying to improve the performance of
the individual models, including using spectral features for
better laughter and backchannel detection.

Although we have evaluated the model using our corpus,
we expect that laughter and backchannel detection perfor-
mance in the live system will be slightly degraded because
these signals are mixed in with ERICA’s speech during her
turn. We limit this by using the microphone array to ignore
ERICA’s voice, but cannot guarantee that user speech will be
clean. Other previous works tend to focus on non-verbal so-
cial signals, but from our third party annotation experiment,
verbal signals are necessary.

Our data was collected in a one-to-one conversational set-
ting, but the models are not restricted to this specific envi-
ronment. Nodding, laughter and backchannel detection are
independent of both environment and user. The eye gaze
model needs to be calibrated to accommodate the position of
Kinect and ERICA. We have successfully implemented all
our models in a separate environment, with different place-
ments of Kinect and ERICA. We propose that the models
can function in a varied number of conversational settings,
including multi-party dialogue.

Our next step is to use the results of engagement recog-
nition to modify the dialogue policy of the system. We con-
sider that the engagement of the user has an influence on
turn-taking behavior or changing the topic of conversation.
However, we can also consider that the flow of dialogue may
be completely modified. One scenario we are considering is
ERICA giving a technical explanation. By recognizing if the
user is engaged, the robot may use simpler terminology to
make her talk more understandable. We intend to formulate
such scenarios where conversational engagement recogni-
tion is necessary and then conduct user experiments to con-
firm the effectiveness of our system.

Conclusion

This paper described models for detecting nodding, laugh-
ter, verbal backchannels and eye gaze, which will be used by
an engagement recognizer during conversation with a robot.
The robot we use in this work is the android ERICA. We
selected these social signals based on a previous experiment
where third party observers annotated changes in engage-
ment based on behaviors. The inputs are a Kinect sensor and
a microphone array. Although the performance of our mod-
els are varied, their combination is effective. We observe
a slight degradation in performance for our engagement
recognition model when using the outputs of social signal
detection compared to annotated values. We have integrated
these models into ERICA’s system architecture and intend
to make her an engagement-aware conversational robot.
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