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Abstract

For noise-robust automatic speech recognition (ASR),
we propose a novel voice activity detection (VAD) method
based on a combination of multiple features. The scheme
uses a weighted combination of four conventional VAD fea-
tures: amplitude level, zero crossing rate, spectral informa-
tion, and Gaussian mixture model (GMM) likelihood. The
weights for combination are adaptively updated using min-
imum classification error (MCE) training. In this paper,
we first investigate the effect of adaptation of the combi-
nation weights and GMM parameters, and demonstrate that
the weights can be effectively adapted with a single utter-
ance. Then, we present application of the method to ASR.
It is confirmed that the proposed method significantly out-
performs conventional methods in various noise conditions.
Index Terms: speech recognition, voice activity detection,
MCE training, noise adaptation

1. Introduction

Voice activity detection (VAD) is a vital front-end in auto-
matic speech recognition (ASR) systems, especially to per-
form robustly in noisy environments. If speech segments are
not correctly detected, the subsequent recognition processes
would be often meaningless. Therefore, many studies have
been conducted so far[1]-[6]. However, there are a variety
of noise conditions and no single method is expected to cope
with all of them.

In order to realize VAD robust against various kinds
of noise, we have proposed a combination of multiple
features[7]. The goal of the scheme is to broaden the cov-
erage of noise conditions. It is somewhat similar to multi-
condition training, which is very popular in acoustic model-
ing for noisy speech recognition, and more recently a noise
reduction method integrating several techniques was pro-
posed as well[8].

Specifically, we adopt a combination of four represen-
tative features for our VAD: amplitude level, zero crossing
rate (ZCR), spectral feature, and Gaussian mixture model
(GMM) likelihood. These features are combined with
weights, which are optimized based on minimum classifi-
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n error (MCE) training. This combination in effect
cts the optimal method according to the noise condi-
, and the optimization of feature weights is regarded as
ptation” to the environment. In real-world applications,
necessary that this adaptation is made possible with a
few number of utterances. In this paper, therefore, we

ent investigation of the weight optimization as well as
M adaptation. Based on the analysis, we apply the VAD
hod to an ASR system, to demonstrate that the enhanced

actually leads to improvement of ASR performance.
This paper is organized as follows. Section 2 gives
ief overview of our VAD scheme and description of
ted features. Section 3 reports experimental evalua-
of the VAD, focusing on the adaptation of the combina-
weights and GMM parameters. Section 4 addresses its
ication to ASR and experimental evaluation in various
e conditions. Section 5 concludes the paper.

2. Proposed VAD Method

Framework

flow of the proposed VAD scheme is shown in Figure 1.
rst, input data is divided into frames. Then, for each
e, four features are calculated: amplitude level, ZCR,
tral information, and GMM likelihood. The features are
ted as x(1), · · · , x(4) in the figure, and they are normal-
through a sigmoid function as below.

f (i)(x(i)) =
1

1 + exp{−α(i)(x(i) − β(i))} (1)

e, α(i) and β(i) are determined from the variance and the
n of x(i). Then, the normalized features are combined
weights w1, · · · , w4. Thus, the combined score for a
e Xt is defined as

F (Xt) =
4∑

i=1

wi · f (i)(x(i)
t ). (2)

e, the weights wi must satisfy the following conditions:

4∑

i=1

wi = 1, wi > 0.
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Figure 1: Framework of the proposed VAD

The initial weights are set to all equal (i.e. 0.25). The frame-
wise decision of speech and non-speech is made by compar-
ing the function F (Xt) against a threshold θ.

In the training or adaptation phase, correct labels, i.e.
starting and end points of utterances, are given to compute
a loss function based on F (Xt), and then MCE training is
performed frame by frame.

2.2. Features for VAD

2.2.1. Amplitude level

Amplitude level is one of the orthodox features for VAD,
though it is not robust against low SNR conditions[1]. It
is defined as the logarithm of the signal energy; that is, for
N -length Hamming-windowed speech samples {sn : n =
1, · · · , N}, it is computed as

x
(1)
t = log

N∑

n=1

s2
n. (3)

2.2.2. Zero crossing rate (ZCR)

Zero crossing rate (ZCR) is the number of times the signal
level crosses 0 during a fixed period of time, and it is also
widely used for VAD[2]. It is very effective for some kinds
of noise, but not at all for noise having frequent zero cross-
ing.

2.2.3. Spectral information

Recently, many VAD methods based on spectral informa-
tion have been studied [3, 4]. We partition the frequency
domain, computed with FFT, into several channels and cal-
culate the signal to noise ratio (SNR) for each channel. For
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pectral feature in our method, we compute the average
over all channels by

x
(3)
t =

1
B

B∑

b=1

10 log10

S2
bt

N2
b

, (4)

re B denotes the number of channels (20 in this work).
term Sbt and Nb indicate the average intensity within
annel b for speech and noise. Here, Nb is estimated in
nce using the beginning segment of the utterance.

4. GMM likelihood

ssian mixture model (GMM) is getting widely used
speech detection, because the statistical model is eas-
rained and usually powerful[5, 6]. The log-likelihood
of speech GMM to noise GMM for an input frame is

puted by

x
(4)
t = log(p(vt|Θs)) − log(p(vt|Θn)), (5)

re vt is an acoustic vector for the GMMs, and Θs and
denote the model parameter set for speech and noise,
ectively. The GMM for noise has to cover a variety of
e characteristics and should be adapted to the environ-
t if possible.

Weight Optimization using MCE Training

dapt our VAD scheme to noisy environments, we ap-
minimun classification error (MCE) training based on
ralized probabilistic descent (GPD) to optimization of
ombination weights wi. Loss functions for speech and

-speech are defined, and a formula for updating weights
rived from them. Detail of the procedure is described
].

Evaluation of Weight Adaptation in VAD

Task and Conditions

first conducted experimental evaluation of the VAD
peech detection performance in various noisy environ-
ts. The frame-wise false alarm rate (FAR) and false re-
on rate (FRR) were used as evaluation measures. FAR
e percentage of non-speech frames incorrectly classified
peech, and FRR is the percentage of speech frames in-
ectly classified as non-speech. In this paper, we mainly
equal error rate (EER), a figure at the operating point
re FAR equals to FRR, for simplicity.
In the experiments, speech data (16kHz sampling) from
peakers were used. Ten utterances were used for testing
ach speaker. Each utterance lasted a few seconds, and

e-second pauses were inserted between them. To make
t set of noisy data, we added the noise of air conditioner
), craft machine (CM) and background speech (BS) to



Table 1: Comparison of methods (EER(%) in VAD): 5db

GMM only Proposed
(base) (adapted) (base) (adapted)

AC 16.6 16.1 10.5 10.4
CM 16.8 16.4 14.4 14.3
BS 18.0 17.5 17.9 17.8

Table 2: Comparison of methods (EER(%) in VAD): 15db

GMM only Proposed
(base) (adapted) (base) (adapted)

AC 7.8 7.3 4.1 4.2
CM 11.2 11.1 7.7 7.8
BS 10.3 10.4 10.0 10.1

(base): baseline GMM
(adapted): after MLLR adaptation of GMM
AC: air conditioner, CM: craft machine, BS: background speech

the clean speech by varying the SNR (5, 15db). In total,
we have 600 (= 3 noise types × 2 SNR × 10 persons × 10
utterances) samples as the test set. For each noise condition,
a different set of ten utterances, which are different in text
from the test set and taken one by one from all speakers, was
used for adaptation of the combination weights and GMM
parameters. Namely, the adaptation is performed without
depending on speakers and texts.

The frame length is 100ms for amplitude level and ZCR,
and 25ms for spectral feature and GMM likelihood. The
frame shift is 10ms for all features. Each GMM con-
sists of 32 Gaussians with diagonal covariance matrices,
for acoustic parameters of 12 mel-cepstral coefficients with
their Δ and Δ-power. The speech GMM is trained with the
JNAS (Japanese Newspaper Article Sentences) corpus that
includes 32K utterances by 306 speakers. For training of the
noise GMM, three types of noise of air conditioner, office
and corridor were used. Notice that latter two types of noise
are different from those used to make the test set.

3.2. Results

In this paper, we use the method based on GMM only as
a reference, because it gives the best performance among
the individual methods mentioned in Section 2 in most of
the cases[7]. We also investigated the effect of adaptation
of GMM parameters. Here, MLLR adaptation is conducted
for speech and noise GMMs using the adaptation data of ten
utterances, for which correct labels and phonetic transcripts
are given. The results are summarized in Tables 1 and 2 for
the cases of 5db and 15db, respectively. In these tables, EER
in VAD is listed for three noise types. It is observed that
the adaptation of GMM is effective consistently. However,
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e 3: Number of utterances for weight adaptation
R(%) in VAD): 5db

0 1 5 10

AC 11.2 10.8 10.8 10.5
CM 16.8 14.8 14.4 14.4
BS 19.3 18.3 18.1 17.9

improvement is not so large as the general difference
een the proposed method and the GMM-only case. In

proposed method, the gain by the MLLR adaptation is
ginal.
Next, we investigate the necessary data size for adapt-
the combination weights based on MCE training in the
osed method. In Table 3, EER in VAD for the 5db con-
n is shown by changing the number of utterances up to
and “0” means the case where all weights are equal. It
early observed that the weight adaptation has a signif-
t impact, and the effect is almost saturated by the first
rance, that is, the adaptation is done by one utterance.

4. Application and Evaluation in ASR

Utterance Detection

rder to apply the proposed VAD method to ASR, it is
ssary to build up an utterance unit based on the frame-
decision, while rejecting false alarms. Here, we in-

uce a simple heuristic method: First, we merge seg-
ts with a pause gap smaller than a threshold (=100ms).
n, we reject segments shorter than another threshold
0ms). Here, we assume that spoken utterances must

onger than this threshold. The remaining contiguous
ents after these processes are judged as utterances, and

into an ASR system one by one. Although a more so-
ticated method can be explored, it is not the main scope
is work.

Task and Conditions

evaluation in ASR, we collected 1345 utterances from
same ten speakers1, and made a test set by adding the
e three types of noise with SNR of 5, 10 and 15db. Thus,
ave 12105 samples (= 3 noise types × 3 SNR × 1345

rances).
The recognition task is simple conversation with a robot.
nite state automaton grammar is handcrafted with a
bulary of 865 words. The acoustic model is a pho-

c tied-mixture (PTM) triphone model based on multi-
ition training. These models are fed into our speech
gnition engine Julius/Julian.
For the proposed VAD method, weight adaptation was

recise labels are not necessary in this evaluation.



conducted with the same ten utterances. We chose the
threshold value for discriminant function F (Xt) which
gave the best EER in the previous Section for each condi-
tion.

4.3. Results

In Tables 4∼6, ASR performance in word accuracy is listed
for the SNR conditions of 5db, 10db and 15db, respectively.
In these tables, the proposed method is compared against
four individual methods. The ZCR-based method did not
work at all for the craft-machine noise (CM) which has fre-
quent zero crossing. It is clearly seen that the proposed
method outperforms the other methods in almost all con-
ditions, and realizes significant improvement on average.

For reference, the tables give the accuracy obtained
when the weight adaptation is conducted with the test
set “(Closed)”, and also when the utterance segmentation
(VAD) is done manually “(Oracle)”. The proposed method
shows comparable performance to the “Closed” case. It
means that the weight adaptation is reliably performed with-
out depending on the given data. When compared with
the “Oracle”, larger degradation is observed for the cases
of lower SNR and background speech (BS). The result
confirms the significance of VAD and difficulty in non-
stationary noise such as background speech. In actual, we
observed many false alarms causing insertion errors in ASR
in this noise.

5. Conclusion

We have presented a robust VAD method by adaptively
combining the four different features. In the experimen-
tal evaluations with a variety of noise conditions, the pro-
posed method realizes the significantly better performance
than the conventional individual techniques. It is also shown
that the weight adaptation is possible with only one utter-
ance and as reliable as in the closed training. In the future,
we will investigate on-line adaptation of the weights and en-
hancement for non-stationary noise.
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