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Abstract
This paper presents a voice activity detection (VAD) scheme
that is robust against noise, based on an optimally weighted
combination of features. The scheme uses a weighted com-
bination of four conventional VAD features: amplitude level,
zero crossing rate, spectral information, and Gaussian mixture
model likelihood. This combination in effect selects the opti-
mal method depending on the noise condition. The weights for
the combination are updated using minimum classification error
(MCE) training. An experimental evaluation under three types
of noisy environment demonstrated the noise robustness of our
proposed method. Adapting the feature weights was shown to
enhance the detection ability and to be possible using ten or
fewer training utterances.

1. Introduction
One of the most significant and tackled problems in automatic
speech recognition is achieving robustness against noise. The
approaches to this problem include noise reduction, such as
spectral subtraction and Wiener filtering, and adaptation of
acoustic model to a noisy environment by MLLR or PMC.
Voice activity detection (VAD) is another crucial part of the
effective performance of an automatic speech recognition sys-
tem [1]. If speech segments are not correctly detected, the
subsequent recognition processes would be meaningless. Many
methods have been proposed so far, but no single method per-
forms satisfactorily. In addition, these VAD methods are af-
fected by noise conditions.

To develop a VAD scheme that is robust against various
kinds of noise, we propose a combination of multiple features.
Our aim is to broaden the coverage of noise conditions com-
pared to conventional VAD methods. A similar approach to
noise reduction was reported in [2]. We use a combination of
the following four representative features for our VAD:

• Amplitude level

• Zero crossing rate (ZCR)

• Spectral information

• Gaussian mixture model (GMM) likelihood

These features are weighted and combined, where feature
weights are optimized based on minimum classification error
(MCE) training. This combination in effect selects the optimal
method based on the noise condition. The optimal combination
of features is expected to lead to further improvement in detec-
tion accuracy. In this scheme, the data necessary to optimize
the feature weights is important. We assume ten utterances are
available to determine the optimal weights.

This paper is organized as follows. In Section 2, we present
an overview of our VAD system scheme, each method used in
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ombination, we then describe the MCE training used to
ize the combination weights. The experimental conditions
sults are reported in Section 3, and conclusions and future

s are given in Section 4.

Weighted Combination of VAD Methods
Framework

ow of our VAD system is shown in Figure 1. Our frame-
is applied in a framewise manner. At first, the system di-
input data into frames. Then four features are calculated:
tude level, ZCR, spectral information, and GMM likeli-

The features are shown as f (1), · · · , f (4) in the figure,
hey are combined with weights w1, · · · , w4. The com-
score of data frame xt (t: frame number) is defined as
s:

F (xt) =

4∑
k=1

wk · f (k)(xt), (1)

K denotes the number of combined features. The
ts wk must satifsy the following conditions:

K∑
k=1

wk = 1, (2)

wk > 0, (3)

the initial weights are all equal (i.e., 0.25 in this case).
he following two discriminative functions judge whether
frame is speech or noise.

gs(x) = F (xt) − θ, (4)

gn(x) = θ − F (xt), (5)

θ denotes the threshold value of the combined score.
xt is regarded as a speech frame if the discriminative func-
f speech gs(xt) is larger than that of noise gn(xt). Oth-
e, xt is regarded as a noise frame. Actually, this judge-
can be made simply by comparing F (xt) and θ. How-
MCE training requires a discriminative function for each
r. Therefore, the two functions are prepared. A label file
d to train the weight of each feature. This file includes
labeled starting and end points of each utterance. Each
of the utterance is judged as speech or non-speech, and

dingly, the weights are updated in a framewise manner.

Features and Methods for VAD

Amplitude level

itude level is one of the most common features of VAD
ds and is used in many applications. The amplitude level
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Figure 1: Framework

at the t-th frame Et is computed as the logarithm of the signal
energy; that is, for N-length Hamming-windowed speech sam-
ples {sn, n = 1, · · · , N},

Et = log
N∑

n=1

s2
n. (6)

In our method, the amplitude level of noise is assumed to be
known in advance. Then, the feature used in the combination is
calculated using the ratio of amplitude of the input frame to the
amplitude of noise as follows:

f
(1)
t =

Et

En
, (7)

where En denotes the amplitude level of noise.

2.2.2. Zero crossing rate (ZCR)

Zero crossing rate (ZCR) is the number of times the signal level
crosses 0 during a fixed period of time, and it is used for not
only speech but also various detection applications. Similarly
to amplitude level, a ratio of the input frame to noise is used for
this feature. The feature f

(2)
t is calculated as follows:

f
(2)
t =

Zt

Zn
, (8)

where Zt denotes the ZCR of the input frame, and Zn denotes
that of noise.

2.2.3. Spectral information

Many VAD methods based on spectral information have been
studied recently [4, 5]. The spectrums of speech and noise are
shown in Figure 2. As shown in the figure, we partition the
frequency domain into several channels and calculate the signal
to noise ratio (SNR) for each channel. We then compute the
average value of each SNR. The spectral information feature
f

(3)
t is defined as

f
(3)
t =

1

B

B∑
b=1

10 log10

S2
bt

N2
b

, (9)

where B denotes the number of channels. The term Sbt and Nb

indicate the average intensity within channel b for speech and
noise. Similarly to amplitude level and ZCR, Nb is assumed to
be obtained in advance.
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Figure 2: Spectrum of speech and noise

GMM likelihood

sian mixture model (GMM) is getting widely used for
h detection, because of its text-independency and scala-
in training [3]. A log-likelihood ratio of speech GMM to
GMM for input frames is used for the GMM feature. The
e f

(4)
t is calculated as

f
(4)
t = log(p(xt|Θs)) − log(p(xt|Θn)), (10)

Θs and Θn denote the model parameter set of GMM for
eech and noise, respectively.

Weight Optimization Using MCE Training

apt our VAD scheme to noisy environments, we applied
training based on the generalized probabilistic descent
d [6] to the optimization of the weights.

Definition of Loss Function

e MCE training, the misclassification measure of training
rame xt is defined as

dk(xt) = −gk(xt) + gm(xt), (11)

k denotes the true cluster (i.e., speech (s) or noise (n )),
indicates another cluster. When (11) is negative xt is

ctly classified.
he loss function lk is defined as a differential sigmoid
ion approximating the 0-1 step loss function:

lk(xt) =
(
1 + exp(−γ · dk)

)−1
, (12)

γ denotes the gradient of the sigmoid function. The goal
discriminative training is to minimize the loss function
on the probabilistic descent method.

Weight Adjustment

g the weight adjustment in the MCE training, the weight
is transformed into a new set w̃ because of a constraint
0);

w̃ = {w̃1, w̃2, . . . , w̃K}, (13)

w̃k = log wk. (14)

he weight set, w̃, is sequentially adjusted every time a
is given (i.e., sample-by-sample mode). The weight ad-

ent is defined as:

w̃(t + 1) = w̃(t) − εt∇lk(xt), (15)



where εt is a monotonically decreasing learning step size. The
gradient of Eq. (15) is obtained as follows.

∇w̃ lk(xt) =
∂lk
∂dk

∂dk

∂gj
· ∇w̃gj(xt), (16)

where ∂lk
∂dk

, ∂dk
∂gj

, and ∇w̃lgj(xt), which are elements of

∇w̃gj(xt), are given by

∂lk
∂dk

= γ · lk(1 − lk), (17)

∂dk

∂gj
=

{ −1 j = k
1 j �= k

, (18)

∇w̃lgj(xt) =
∂

∂wl

[
L∑

l=1

wlFl(xt)

]
· ∂wl

∂w̃l

= wlFl(xt). (19)

After w̃ is updated, w̃ is returned to w as follows:

wk =
exp w̃k

L∑
l=1

exp w̃l

(20)

Eq. (20) includes normalization of the weights, which satisfies
the condition (2).

3. Experimental Evaluation
3.1. Task and Conditions

We conducted speech detection experiments in noisy environ-
ments to evaluate the performance of our proposed method.
The frame-based false alarm rate (FAR) and false rejection rate
(FRR) were used as evaluation measures. FAR is the percent-
age of non-speech frames incorrectly classified as speech, and
FFR is the percentage of speech frames incorrectly classified as
non-speech.

In our experiments, speech data (16kHz) from ten speak-
ers were used. Ten utterances were used for testing for each
speaker. Each utterance lasted a few seconds, and three-seconds
pauses were inserted between them. To make the noisy data,
we added the noises of sensor room, machine, and background
speech to the clean speech data by varying SNR (10, 15dB). In
total, we had 600 (= 3 types × 2 SNR × 10 persons × 10 utter-
ances) samples as the test set. A different set of ten utterances,
whose text is different from the training set, was used for the
weight training for each condition.

The frame length was 100-ms for amplitude level and ZCR,
and 250-ms for spectral information, and GMM likelihood. The
frame shift was 250-ms for each feature. Noise features such as
En in Eq. (7), Zn in Eq. (8) and N2

b in Eq. (9) were calculated
using the first second of speech data, which did not include ut-
terances.

For GMM likelihood, a 32-component GMM with diagonal
covariance matrices was used to model speech and noise. The
GMM parameters were trained with EM algorithm. The param-
eters of GMM were 12 mel-cepstral coefficients with their Δ
and Δ-power. JNAS (Japanese Newspaper Article Sentences)
corpus that includes 306 people and about 32000 utterances was
used to train the speech GMM. For the noise GMM, three types
of noise of sensor room, office, and corridor noise were used
for training. Office and corridor noise was not used to make the
training and testing data for the VAD experiment.
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[2]
Results

xperimental results for six types of noise conditions are
n in Figure 3∼8. These figures compare our proposed
d to the individual methods we combined. The horizon-
is corresponds to the FAR, and the vertical axis corre-
s to the FRR. ‘Amplitude’ indicates the amplitude level,
’ the zero crossing rate, ‘Spectrum’ the spectral informa-
‘GMM’ the GMM likelihood, and ‘Proposed’ our pro-
method. The operating curve is plotted by varying the
old (θ) value of the evaluation function and each point in

gures indicates one threshold value. Under sensor room
, ‘ZCR’ had the best performance of all the individual
ds. Notice that GMM covered this noise in training, but

ot have the best performance. For craft machine noise,
trum’ performed best, and for background speech noise,

’ performed the best. These observations indicate that
st method differs depending on the noise condition. How-

‘Proposed’ outperformed the individual methods under all
conditions. This proves that our method is robust against

. We also conducted a closed test, where testing was done
he speech data used for the weight training, and the result
wn as ‘Closed’ in Figure 3. The difference between the
ed’ and ‘Proposed’ results is trivial. Thus, the proposed
d is robust against variation of utterances. The same con-
n was obtained under the other conditions.
e also compared our method before and after optimizing
eights to confirm the effectiveness of the training. Be-
he training, the weights are set to equal (= 0.25). The
error rate (EER) under each noise type where the SNR
0dB is shown in Table 5. EER is a figure at the operat-

oint where the FAR equals to the FRR. For craft machine
ackground speech noise, EER was significantly improved
the weights were optimized, though it was not slightly

ded under sensor room noise.

4. Conclusions
aper proposed a VAD scheme that is robust against noise
on optimally weighted combinations of multiple fea-
We conducted a detection experiment under three dif-

t types of noise and compared our proposed method to the
dual methods we combined. Our method performs better
ny of its component methods under all noise conditions,
e found that it is robust against noise. We also confirmed
djusting the feature weights enhances the detection ability
at our VAD system is adapted to the noise condition using
en or fewer utterances.
ur future work includes integration of our VAD method
utomatic speech recognition systems and evaluation with
nition accuracy.
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Figure 3: Sensor room:10db
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Figure 4: Sensor room:15db

Figur

Figur
 0

 0.05

 0.1

 0.15

 0.2

 0  0.05  0.1  0.15  0.2

F
R

R
 (

F
al

se
 R

ej
ec

tio
n 

R
at

e)

FAR (False Alarm Rate)

Amplitude
ZCR

GMM

Spectrum
Proposed

e 5: Craft machine:10db (Plot of ZCR is out of this range.)
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e 6: Craft machine:15db (Plot of ZCR is out of this range.)
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Figure 7: Background speech:10db
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Figure 8: Background speech:15db
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