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Abstract

This paper presents a novel Bayesian method that can directly
recognize overlapping utterances without explicitly separating
mixture signals into their independent components in advance
of speech recognition. The conventional approach to contami-
nated speech recognition in real environments uniquely extracts
the clean isolated signals of individual sources (e.g., by noise
reduction, dereverberation, and source separation). One of the
main limitations of this cascading approach is that the accuracy
of speech recognition is upper bounded by the accuracy of pre-
processing. To overcome this limitation, our method marginal-
izes out uncertain isolated speech signals by integrating source
separation and speech recognition in a Bayesian manner. A suf-
ficient number of samples are drawn from the posterior distribu-
tion of isolated speech signals by using a Markov chain Monte
Carlo method, and then the posterior distributions of uttered
texts for those samples are integrated. Under a certain con-
dition, this Monte Carlo integration is shown to reduce to the
well-known method called ROVER that integrates recognized
texts obtained from sampled speech signals. Results of simulta-
neous speech recognition experiments showed that in terms of
word accuracy the proposed method significantly outperformed
conventional cascading methods.

Index Terms: simultaneous speech recognition, sound source
separation, Bayesian modeling, MCMC, ROVER

1. Introduction

It should be noted that although in our daily lives we always
hear mixed sounds, it sometimes seems that there is only a sin-
gle sound source. For example, we are able to focus our audi-
tory attention on a specific person to talk with in a noisy room
while ignoring irrelevant sounds such as the utterances of the
other people, environmental noise, background music, and re-
verberant sounds. Such selective attention is well known as the
cocktail party effect [1] and contributes to our capability of ro-
bust speech recognition in noisy environments. Moreover, we
can to some extent recognize the overlapping utterances made
by two or three people [2,3]. An interesting observation is that
in both cases the recognition results of contaminated speech
signals immediately come into our awareness with some con-
fidence even though clean speech signals remain unknown.

The conventional way to improve the accuracy of automatic
speech recognition (ASR) in a noisy environment [4-10] is to
take a cascading approach as follows:

S* = argmax p(S| X), (1)
s
@)

where X, S, and Z are contaminated mixture signals, isolated
speech signals, and uttered texts, respectively. Eq. (1) repre-

Z* = argmax p(Z|S™).
z
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Figure 1: The proposed method directly estimates uttered texts

without uniquely estimating isolated speech signals.

sents a preprocessing step (e.g., noise reduction, dereverbera-
tion, and/or source separation) that produces maximum a pos-
teriori (MAP) estimates of clean isolated speech signals, S™,
from the input signals X, and Eq. (2) represents a subsequent
ASR step that produces MAP estimates of uttered texts, Z*,
from the isolated speech signals S*. Note that isolated speech
signals are determined uniquely as intermediate products S™
even though all we are interested in are final recognition results
Z*. A critical problem with this approach is that errors of the
preprocessing step directly have a negative impact on speech
recognition because they cannot be corrected in the ASR step.
Furthermore, the estimated isolated speech signals S™ are not
guaranteed to be optimal for speech recognition.

To solve these problems, we estimate the final recognition
results Z* directly from the input signals X by integrating the
preprocessing and ASR steps in a Bayesian manner as follows:

p(Z]X) = / p(Z|S)p(8]X)dS, 3)
Z" = argmax p(Z|X), 4)
zZ

where Eq. (3) represents marginalization over all possible iso-
lated speech signals S for avoiding uniquely determining S™.
Since in general Eq. (3) is analytically intractable, we instead
perform Monte Carlo integration [11] as follows:

Sle(Sl|X), (5)
L
1
P(Z‘X):EZP(ZLSI), (6)
=1

where S; is a random sample drawn from the posterior distri-
bution of S in the preprocessing step and L is the total number
of samples. In the ASR step the posterior distributions of Z are
averaged over L samples.

In this paper we focus on source separation as preprocess-
ing and propose a novel method of simultaneous speech recog-
nition for directly recognizing overlapping utterances Z™ con-
tained in mixture speech signals X (Fig. 1). All possibilities of
uncertain isolated speech signals S can be taken into account
by integrating source separation p(S|X) and speech recogni-
tion p(Z|S) in a Bayesian manner. More specifically, we use
a nonparametric Bayesian method of microphone-array-based
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source separation [12] for sampling isolated speech signals S;
according to Eq. (5), and for ASR we use an open-source soft-
ware called Julius [13]. Since Egs. (4) and (6) are still hard to
solve, for mathematical convenience we make two assumptions
in the ASR step. The first is that the posterior distributions of
individual words are independent of each other, and the second
is that the recognition results can be determined with absolute
confidence in the ASR step. These assumptions make Eqs. (4)
and (6) equivalent to integration of the recognition results for L
sampled speech signals based on a multistage recognizer output
voting error reduction (ROVER) method [14].

2. Related work

This section introduces related work on source separation and
speech recognition. The advance in source separation enabled
us to accurately estimate the speech signal of each speaker. The
advance in speech recognition, on the other hand, enabled us
to accurately recognize distorted and/or noisy speech signals.
Although these advances led to improvement of the recogni-
tion performance, independent improvement of these steps has
a limitation for improving recognition performance. Therefore,
a speech recognition method that directly models simultaneous
speeches has also been studied.

2.1. Source separation

Various methods of source separation have been proposed [12,
15,16] as a basic technique of audio analysis. To cluster time-
frequency bins of multi-channel mixture signals into individual
source signals, Otsuka er al. [12] proposed a notable method
of microphone array processing based on a hierarchical Dirich-
let process extension of the covariance model [17] (HDP-CM).
Barker et al. [15] proposed a method of monaural sound source
separation that uses the modulation spectrogram as a feature for
nonnegative tensor factorization. To improve the robustness of
speech recognition, Shao et al. [16] proposed a source separa-
tion method that uses the periodicity information to segregate
voiced portions of individual sources in each time frame and
the onset/offset information to segregate unvoiced portions.
2.2. Speech recognition

To make speech recognition robust to noise and reverberation,
many studies have attempted to improve acoustic models. For
example, acoustic models have often been trained from not only
clean speech data but also contaminated speech data [5,6]. A
major limitation of such multi-condition training is that acous-
tic models should be retrained if recording environments are
changed. Another popular approach is model adaptation that
tries to modify an acoustic model trained from clean speech data
according to recording environments [7,8]. Recently, deep neu-
ral networks (DNNs) have widely been used for substantially
improving the generalization capability of acoustic models [9].
Michael et al. [10] empirically showed the noise robustness of
DNN-based acoustic models.

2.3. Simultaneous speech recognition

Varga et al. [18] and Deoras et al. [19] proposed a method of si-
multaneous speech recognition that can directly recognize over-
lapping utterances of short words (digits) by using a factorial
hidden Markov model (FHMM) that consists of multiple hid-
den Markov chains corresponding to individual phoneme se-
quences. This method, however, is computationally prohibitive
for large-vocabulary continuous speech recognition. Several
methods [20, 21] perform source separation and then execute
speech recognition using only reliable acoustic features of sep-
arated speech signals according to the missing feature theory.
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Figure 2: Architecture of the proposed system.

3. Proposed method

This section explains a proposed method of simultaneous speech
recognition based on Bayesian integration of source separation
and speech recognition according to Egs. (4), (5), and (6). Since
the optimization problem given by Eq. (4) is still hard to solve,
in this paper we pose two assumptions for mathematical conve-
nience (explained later). This makes the optimization problem
tractable as follows (Fig. 2):
1. Computing Eq. (5)
A sufficient number of isolated speech signals {S;}~ ;
are randomly sampled from the posterior distribution of
those signals. The state-of-the-art probabilistic model of
source separation called HDP-CM [12] is used for calcu-
lating the posterior distribution.
2. Computing Egs. (4) and (6).
Each separated speech signal is independently recognized
by using a well-known speech recognizer called Julius
[13]. To uniquely determine the most likely recognition
results for the simultaneous speech signals, the recogni-
tion results for all sampled speech signals are integrated
by using a multistage recognizer output voting error re-
duction (ROVER) method [14].
Note that the proposed method does not uniquely determine
hypothetical isolated speech signals, i.e., those signals can be
marginalized out in a Bayesian manner. This leads to the per-
formance superiority over conventional methods that just per-
form source separation and speech recognition in a cascading
manner.
3.1. Derivation of optimization algorithm
To derive a tractable algorithm that solves Egs. (4), (5), and (6),
we pose two assumptions just for the sake of mathematical con-
venience. The first assumption is that the posterior distributions
of individual words are independent of each other as follows:

K

p(Z1X) =[] p(2:]X), (7
k=1

where Zj; is the kth word in the recognition result Z and K is

the number of words contained in Z. We aim to estimate the

optimal word Z;; for each k because maximization of p(Z|X)

is equivalent to independent maximization of p(Z|X).

The second assumption is that speech recognition itself can
be performed with absolute confidence. In other words, we as-
sume a “function” f(.S) = Z that converts isolated speech sig-
nals S into texts Z in a deterministic way as follows:

p(Zk|S1) = 14,5 (Zk), ®)
where 14, (s,)(Z) is a delta function given by
L (fx(81) = Zk),
1 Zy) = 9
(50 (Z) {O (otherwise), ©)



where f5(S)) is the kth word in f(S;). Using these assump-
tions, the Eq. (6) becomes,
1 &
Zn zargzrnaXZZIfk(sl)(Zk). (10)
k =1

This means that each optimal word Z;; can be obtained by a ma-
jority vote of the recognized words { f1,(S;)}; for L sampled
speech signals. This is equivalent to a standard variant of the
ROVER method [14] based on word counts in multiple recog-
nition candidates. The speech recognition performance can be
improved by dealing with the recognition confidence of each
word. We integrate the recognized words { f1,(S;)}; by us-
ing the ROVER method with the confidence values.

3.2. Implementation of optimization algorithm

The proposed method consists of the following two steps: 1)
taking samples of isolated speech signals (separated sounds)
and 2) recognizing those signals independently and integrating
the recognition results.

3.2.1. Taking samples of isolated speech signals

A sufficient number of samples of separated sounds {S;}¥ ;
are taken by using HDP-CM [12]. HDP-CM makes an assump-
tion of the spectral sparsity of each source signal in the time-
frequency domain. This enables one to assume that only one
sound source is likely to be dominant at each time-frequency
bin. HDP-CM separates a mixed sound by clustering time-
frequency bins into individual sound sources and localizes each
source by assigning a certain direction to each cluster (Fig. 3).

First of all, the input audio signal is converted into the time-
frequency domain by taking the short-time Fourier transform
(STFT) [22]. Let x;s be the multi-channel observed spectra at
time frame ¢ and frequency bin f. When the mixed sound con-
sisting of IV sources is observed with M microphones under an
anechoic condition, x;y € CM is an M-dimensional complex-
valued vector given by
(11)
Note that s;; € C is the source spectra and that By € CM*¥
are the instantaneous mixing coefficients. The nth element of
s¢f is the source spectrum arising from the nth source. Let
bs,mn be the element of By at the mth row and nth column.
by,mn represents the wave-propagation characteristics from the
nth source to the mth microphone. We assume that s, ¢ follows
a Gaussian distribution as follows:

sty ~ Ne(sep|0, M T), (12)

where N (a4 f|pt, A™1) is the multivariate complex normal dis-
tribution with mean g and precision A [23]. Ay is treated as a
fixed value, i.e., Ay = |2¢7| " I represents a identify matrix.
Since the spectral components of the sound sources are sparsely
distributed in the time-frequency domain, it is assumed that for
each time frame ¢ and frequency bin f only one sound source is
dominant. This enables us to establish the following equation.

(13)

where £y denotes a source index that is dominant at time frame
¢ and frequency bin f. by, , corresponds to the k;sth column

Lrf = sttf~

kg
Tip =brrps,y

vector of By, and sf Jﬁif corresponds to the k; sth element of sy .
The assumption of the source sparsity means that sf} = 0if
ki = k and k' # k. Focusing on the linear relationship be-
tween ;s and s;r, Eqs. (12) and (13) lead to the likelihood
function for @ as follows:

@ofloes, w, Aep, H ~ Ne(@eg |0, (AesHypw., ) 7). (14)
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Figure 3: HDP-CM. The right graph is a plot of complex-valued
multi-channel spectra of two sources at a particular frequency.

This observation model corresponds to the covariance model
[17]. =z4y represents the cluster index of x:f, wy represents
. -1 H
the direction of the kth cluster, and waZt ~ bfWth bfwz”.

In addition, we assume that H ;4 follows a complex Wishart
distribution [24], which is the conjugate prior distribution, that
is, H y4 follows the following process:

Hfd NWC(Hfd|Vfd,Gfd). (15)

The hyperparameters are set as Grq = (qraqra™ + eI)™"
and vyq = M. The given steering vectors qsq are normal-
ized such that qqufd = 1, and ¢ is set to 0.01 in order to en-
able inverse operation. The posterior distribution of Eq. (14) is
p(Z, W, X, H|X). p(Z,W|X) is calculated from this poste-
rior distribution by assuming A to be a fixed value and marginal-
izing out Hyy, . As illustrated in Fig. 3, clustering of z:s and
wy, 1s equivalent to source separation and localization. This is
performed by sampling the cluster using p(Z, W|X). When
2 ¢ and w}, denote the ith sample and mff denotes the power
arising from the source at the direction d in time frame ¢ and
frequency bin f, mff is calculated as follows:

1
1 i
@i = ; Buly d)ars, (16)
where 0 (wg, d) is defined as follows:
1 (wg =d),
O(wy,d) = 17
(we, ) {0 (otherwise). an

The separated sound signal arising from the source at direction
d is determined by calculating w?f for each time frame ¢ and
frequency bin f. The source signals S; are obtained by con-
verting :L'ff into the time domain.

3.2.2. Integrating recognition results

Speech recognition for separated speech signals \S; is indepen-
dently performed by using a standard speech recognizer called
Julius [13]. Julius is capable of estimating the confidence for
each word during speech recognition [25]. The recognition re-
sults for all L samples are integrated into one recognition re-
sult by the ROVER method, which is a popular method to inte-
grate several recognition results. The basic flow of the ROVER
method is shown in Fig. 4.

The first step of the ROVER method is to make a set of
words located at the same position by aligning candidate recog-
nition results for all L samples. Since joint alignment of more
than two sentences is difficult, those sentences are aligned one
by one using a two-dimensional dynamic programming.

The second step of the ROVER method is to determine the
recognition result by a majority vote, i.e., to select the most
highly scored word from each set of words. The score of each
word is calculated using both the appearance frequency and the
word confidence. One word is selected from each set of words.
Score(w), which is the score of word w, is calculated as follows:

(1-a)C(w), (18)

Nu
=a—— +

Score(w) N



R;: This black pen is mine
R;: This plastic pen with mine
Rj3: This black pen is my pen

B Alignment

This black pen is mine &
This plastic pen with mine &
This black pen is my pen
g Voting
[ This | [black] [ pen | [ is | [mine] [ ¢ ]

Figure 4: The ROVER method. R; denotes the ith candidate
recognition result. Sets of words are constructed by aligning
candidate recognition results, and then a recognition result is
determined by a majority vote on each set of words.

where N, is the number of times that w included in the set of
words, N is the number of words included in the set of words,
« is a parameter used to define the ratio of the appearance fre-
quency and the word confidence, and C(w) is calculated using
the appearance frequency as follows:

C(w) = Ni Z confidence(ws).

wi;=w

19)

Note that w; denotes the ith word in the set of words and that
confidence(w; ) denotes the word confidence for w;.

4. Evaluation

This section reports comparative experiments that were con-
ducted for evaluating the performance of the proposed method
of simultaneous speech recognition.

4.1. Experimental conditions

4-channel simultaneous speech signals were synthesized by us-
ing the transfer function of an anechoic room and two or three
isolated speech signals randomly selected from the ATR pho-
netically balanced Japanese utterances (a01-a50) [26]. Sound
sources were positioned 150 cm away from a microphone array.
We observed two sound sources with the interval 8 = 30° or 60°,
and three sound sources with the interval 0 = 30°. We made
50 sets of simultaneous speech signals. Those audio signals
were sampled at 16 kHz, and the STFT was calculated with a
Hamming window of 512 samples and a shifting interval of 128
samples. We compared the proposed method with conventional
methods that performed source separation and speech recogni-
tion in a cascading manner. Two source separation methods
(IVA [27] and HDP-CM [12]) were used as conventional source
separation methods. Julius was used for speech recognition
(julius-dictation-kit-v4.3.1). In MCMC sampling for the pro-
posed method, each sample S; of isolated speech signals was
obtained by taking the average over 20 successive MCMC sam-
ples. L was set to 50. In the ROVER method, o was set to 0.5
and word confidence for € was set to 1.0. Word accuracy [28]
was used as a measure of recognition performance:

word accuracy = —1 x 100, (20)

where C' is the number of correct words, I is the number of in-
sertion errors, and 7" is the number of words included in ground-
truth sentences.

4.2. Experimental results

The results are listed in Table 1. Clean+Julius means the recog-
nition performance of Julius for the clean isolated signals. The
proposed method HDP-CM+Julius+ROVER achieved the high-
est word accuracy for both two and three overlapped utterances.
Fig. 5 and Fig. 6 show the word accuracies when the number of
samples L was changed from 1 to 50. Although a larger value of
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Table 1: Word accuracies for overlapping utterances.

Method ‘ Two  Three
Clean+Julius (upper bound) | 66.8  66.8

IVA+Julius 294 —17.6
HDP-CM-+Julius 32.6 6.17
HDP-CM+Julius+ROVER | 47.5 271
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Figure 5: The experimental results of recognizing two overlap-
ping utterances according to the number of samples L.
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Figure 6: The experimental results of recognizing three over-
lapping utterances according to the number of samples L.

L tends to yield a better performance, the tradeoff between com-
putational cost and performance should be taken into account.
We confirmed that the proposed method was effective for recog-
nizing simultaneous speech including two or three overlapping
utterances. The fact that the word accuracy obtained by the pro-
posed method was lower than that obtained by Clean+Julius in-
dicates that there would be much room for improvement.

5. Conclusion

This paper presented a method that integrates source separation
and speech recognition in a Bayesian framework. The method
can directly recognize overlapping utterances without uniquely
determining separated speech signals. Many samples are drawn
from the posterior distribution of isolated speech signals by us-
ing an MCMC method, and then the posterior distributions of
uttered texts for those samples are integrated. Under a certain
condition, this Monte Carlo integration was shown to reduce
to the well-known method called ROVER that integrates rec-
ognized texts obtained from sampled speech signals. Results
of simultaneous speech recognition experiments showed that in
terms of word accuracy the proposed method significantly out-
performed conventional cascading methods.

We plan to relax the two assumptions made just for math-
ematical convenience in this paper: that the posterior distribu-
tions of individual words are independent on each other and that
the recognition results have no uncertainty. Moreover, we try to
develop a method that integrates noise reduction, dereverbera-
tion, source separation, and speech recognition into a unified
Bayesian framework for directly recognizing mixture signals
containing noise and reverberation in real environments.
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