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Abstract
While attention-based encoder-decoder (AED) models have
been successfully extended to the online variants for streaming
automatic speech recognition (ASR), such as monotonic chunk-
wise attention (MoChA), the models still have a large label
emission latency because of the unconstrained end-to-end train-
ing objective. Previous works tackled this problem by leverag-
ing alignment information to control the timing to emit tokens
during training. In this work, we propose a simple alignment-
free regularization method, StableEmit, to encourage MoChA
to emit tokens earlier. StableEmit discounts the selection prob-
abilities in hard monotonic attention for token boundary detec-
tion by a constant factor and regularizes them to recover the
total attention mass during training. As a result, the scale of
the selection probabilities is increased, and the values can reach
a threshold for token emission earlier, leading to a reduction
of emission latency and deletion errors. Moreover, StableEmit
can be combined with methods that constraint alignments to
further improve the accuracy and latency. Experimental eval-
uations with LSTM and Conformer encoders demonstrate that
StableEmit significantly reduces the recognition errors and the
emission latency simultaneously. We also show that the use of
alignment information is complementary in both metrics.
Index Terms: Streaming automatic speech recognition, mono-
tonic chunkwise attention, emission latency

1. Introduction
End-to-end (E2E) automatic speech recognition (ASR) mod-
els have been recently studied to streamline the complicated
pipelines in conventional hybrid systems. Online streaming
is one of the most important tasks for real-world applica-
tions. While frame-synchronous models such as connectionist
temporal classification (CTC) [1] and RNN transducer (RNN-
T) [2] are natural choices for the streaming purpose, emerging
progress of streaming attention-based encoder-decoder (AED)
models, such as monotonic chunkwise attention (MoChA) [3],
make them good alternatives as well [4, 5].

Apart from the decoder topology, all streaming E2E mod-
els have a large emission latency because the alignment-
unconstrained E2E training objective encourages the model to
see as many future observations as possible. To tackle this prob-
lem, various methods have been proposed; alignment path re-
striction [6–8], encoder pre-training with frame-level supervi-
sion [7–9], and a new training objective for direct latency min-
imization [7, 10–13]. Among them, FastEmit [11] successfully
reduced the emission latency of RNN-T by modifying the loss
to prioritize the generation of non-blank labels over blank la-
bels without external alignment. However, the method is spe-
cific to RNN-T and cannot be applied to MoChA directly. This
is because MoChA detects token boundaries with a Bernoulli
random variable in the internal attention module while RNN-T

treats all labels, including a blank label, equally in the output
softmax layer.

In this work, we propose a straightforward alignment-free
regularization method, StableEmit, to reduce the emission la-
tency of MoChA. StableEmit discounts selection probabilities
for token boundary detection in MoChA with a constant fac-
tor during training. Simultaneously, we encourage the expected
attention weights calculated from the modified selection proba-
bilities, to sum up to one to recover the attention mass (quantity
regularization [10]). Therefore, the confidence score for token
emission is enhanced and reaches a threshold to emit a token
earlier at test time. This also reduces deletion errors, which sta-
bilizes the search.

Moreover, it is possible to combine StableEmit with align-
ment regularization methods such as delay constrained training
(DeCoT) [7] and CTC-synchronous training (CTC-ST) [10].
We further propose DeCoT-CTC, a new alignment path restric-
tion method combining these ideas.

Experimental evaluations with Long Short-Term Memory
(LSTM) and causal Conformer [14] encoders show that the pro-
posed method significantly reduces the deletion errors and the
emission latency of MoChA. We also demonstrate that the com-
bination with the alignment regularization methods has a com-
plementary effect, leading to further improvements in the accu-
racy and latency. The best MoChA model shows comparable
performance to RNN-T on long-form speech utterances, which
has been difficult to achieve so far.

2. Background
2.1. Monotonic chunkwise attention (MoChA)

MoChA is a linear-time attention model on the basis of hard
monotonic attention (HMA) [15]. To compensate for the perfor-
mance degradation due to the hard attention to a single encoder
output, MoChA introduces an additional soft attention module
restricted to a local chunk of w frames from the boundary de-
tected by HMA. The test-time decoding complexity is linear,
in which the discrete decision zi,j ∈ {0,1} to generate the i-th
token on the j-th encoder output is sampled from a Bernoulli
random variable parameterized by a selection probability pi,j .

Because this procedure is not differentiable, the expected
alignment probabilities αi,j is calculated by summing all possi-
ble alignment probabilities during training as

αi,j = pi,j

j∑
k=1

(
αi−1,k

j−1∏
l=k

(1− pi,l)
)

= pi,j

(
(1− pi,j−1)

αi,j−1

pi,j−1
+αi−1,j

)
. (1)

While Eq. (1) requires the iterative update over j, there is an
effective implementation which parallelizes the calculation by
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using the cumulative sum and product operations, denoted re-
spectively as cumsum and cumprod, as

αi,: = pi · cumprod(1− pi,:) · cumsum
(

αi−1,:

cumprod(1− pi,:)

)
. (2)

The chunkwise attention is estimated with αi,j at training time
and is calculated from the hard boundary at test time. The inter-
ested readers are referred to [3, 15] for more details.

2.2. Quantity regularization

An exponential decay of αi,j due to the recurrence in Eq. (1)
enlarges the mismatch between training and testing behav-
iors, which is the main cause of the poor performance of the
original MoChA [4, 16, 17]. To mitigate this problem, quan-
tity regularization [7] was proposed by introducing a quan-
tity loss Lqua, which makes the expectation of the total num-
ber of boundaries closer to the output sequence length U as
Lqua = |U −

∑
i,j αi,j |.

2.3. Alignment path restriction

One of the effective methods to reduce the emission latency
of MoChA is to ignore paths in Eq. (1) by referring to ex-
ternal alignment information extracted from the hybrid sys-
tem [7]. Given reference boundaries bref = (bref

1 , · · · ,bref
U )

estimated from the word alignment, delay constrained training
(DoCoT) [7] masks out inappropriate paths based on

αi,j =

pi,j
(
(1− pi,j−1)

αi,j−1

pi,j−1
+αi−1,j

)
(j ≤ bref

i + δ)

0 (otherwise),

where δ is a hyperparameter to control the delay. To recover the
reduced scale of αi,j , it is essential to use quantity regulariza-
tion [7].

Moreover, it is also possible to use CTC alignment to es-
timate bref . We refer to this method as DeCoT-CTC and note
that it is newly investigated in this work. Although the CTC
alignment is not guaranteed to be accurate, it will be effective
because the model still has some freedom to learn the optimal
timing to emit tokens, unlike point-wise boundary restriction in
the expected latency loss described in Section 2.4. Moreover,
the CTC alignment can be obtained without frame-level align-
ment supervision. During training, we use the most probable
CTC alignment as in [10].

2.4. Expected latency loss

Another strategy to reduce the latency is to use boundary super-
vision by minimizing the expected latency loss [7, 10] as

bmocha
i =

T ′∑
j=1

j ·αi,j ,

Llatency =
1

U

U∑
i=1

|bref
i − bmocha

i |,

where bmocha
i is the expected boundary index for the i-th token,

and T ′ is the time length of encoder outputs. When using the
alignment from a hybrid system, training becomes minimum
latency training (MinLT) [7]. When using the CTC alignment,
it becomes CTC-synchronous training (CTC-ST) [10]. We have
shown that CTC-ST outperforms MinLT in the accuracy and
latency [4] and therefore focus on the former in this work.

Table 1: Summary of alignment regularization for MoChA

Source of alignment

CTC Hybrid ASR

Tr
ai

ni
ng

Expected latency
loss CTC-ST [10] MinLT [7]

Alignment path
restriction

DeCoT-CTC
(this work) DeCoT [7]

2.5. Total training objective

To summarize the above methods, the generalized training ob-
jective of MoChA is formulated as follows:

Ltotal
mocha = (1− λctc)Lmocha + λctcLctc

+ λlatencyLlatency + λquaLqua, (3)

where λ∗ is a corresponding task weight. When λlatency > 0,
λqua is set to 0.0 in this work [10]. We summarize the above
alignment regularization methods in Table 1.

3. StableEmit
In this section, we propose StableEmit, a simple but effective
emission latency regularization method for MoChA without ex-
ternal alignment information.

3.1. Motivation

While the methods in Section 2.3 and Section 2.4 can reduce the
emission latency of MoChA, they require alignment informa-
tion, although the CTC alignment can be obtained easily. More-
over, at test time, token boundaries are detected when and only
when pi,j surpasses a threshold τ = 0.5 [15].1 Therefore, if the
confidence of boundary prediction in some speech frames is be-
low τ , the corresponding token cannot be generated because it
does not appear in the subsequent search process. As a result,
this leads to increasing deletion errors, especially for long-form
speech data.

3.2. Formulation

To solve this problem, we propose StableEmit, which discounts
pi,j during training only to detect token boundaries earlier with
high confidence at test time. Specifically, we introduce a con-
stant discount factor λse (0 ≤ λse < 1) and multiply pi,j by
1− λse. Therefore, Eq. (1) is reformulated as

p′i,j = (1− λse) · pi,j , (4)

αi,j = p′i,j

(
(1− p′i,j−1)

αi,j−1

p′i,j−1

+αi−1,j

)
.

Accordingly, Eq. (2) is rewritten as

αi,: = p
′
i,: · cumprod(1−p′i,:) · cumsum

(
αi−1,:

cumprod(1−p′i,:)

)
.

Similarly to FastEmit, StableEmit is also a sequence-level reg-
ularization because the discount of pi,j at every grid (i, j) in-
fluences αi,j globally. As the discount decreases

∑
j αi,j , we

further need to use the quantity regularization to recover it. With
this technique, pi,j is optimized to detect token boundaries with

1Setting τ = 0.5 is reasonable when assuming pi,j is well dis-
cretized after the training.
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high confidence because it is encouraged to compensate the dis-
count so that

∑
j αi,j gets closer to 1. In other words, the rea-

sonable value of τ increases from 0.5 to 0.5/(1− λse) through
the training. However, at test time, we keep τ = 0.5 as in the
original formulation, unless otherwise noted. This is effective
for reducing the emission latency because pi,j can reach τ ear-
lier in terms of j if it is trained to recover the discount properly.

Since StableEmit just modifies pi,j during training, it can
be combined with alignment regularization methods that ma-
nipulate αi,j such as DeCoT and CTC-ST. The effect of combi-
nation will be described in Section 4.

4. Experimental evaluations
4.1. Experimental setup

We used the TEDLIUM release v2 (TEDLIUM2) [18], a 210-
hour English lecture speech corpus, and the evaluation sets
include long-form utterances (40/30 seconds in the dev/test
sets, respectively). For the GPU memory capacity, however,
we removed utterances longer than 16 and 20 seconds in the
training data for LSTM and Conformer models, respectively.
We extracted 80-channel log-mel filterbank coefficients com-
puted with a 25-ms window that was shifted every 10ms with
Kaldi [19]. We applied three-fold speed perturbation [20] and
SpecAugment [21]. The vocabularies were constructed by the
byte pair encoding (BPE) algorithm [22] with 10k and 1k units
for AED and RNN-T models, respectively.

For streaming encoders, we used the unidirectional LSTM
(UniLSTM) and causal Conformer (UniConformer) [14] archi-
tectures, both of which follow four CNN layers with a 3× 3
filter. A max-pooling layer with a stride of 2× 2 was inserted
at the 2nd and 4th CNN layer for LSTM and the 4th CNN layer
for UniConformer. We used five layers of UniLSTM encoder
with 1024 units [4]. We adopted Conformer (M) configura-
tion in [14] while reducing the number of blocks from 16 to 12.
Moreover, we replaced batch normalization [23] in each convo-
lution module with layer normalization [24].2 We used Shaw’s
style relative positional encoding (RPE) [26] and clipped the
relative distance to 10 in each block. For streaming, we adopted
causal depthwise separable convolution with a kernel size of 7
and a causal self-attention mask. Therefore, the lookahead la-
tency was introduced in the frontend CNN layers only. Further-
more, we used hierarchical downsampling [27], where the max-
pooling with a stride of 2 was performed in the last frontend
CNN layer, 4th, and 8th Conformer blocks, respectively. This
resulted in the downsampling factor of 8 for the UniConformer
in total while 4 for the LSTM. The total lookahead latency in the
UniLSTM and UniConformer encoders were 60ms and 40ms,
respectively. The decoder consisted of a single layer of LSTM
with 1024 units for MoChA, with a chunk size w = 4. For
RNN-T, we used a two-layer LSTM prediction network with
1024 units and a joint network with 512 units.

The Adam algorithm [28] was used for optimization. We
set λctc to 0.3 in all models, including RNN-T.3 We set
(λlatency, λqua) to (1.0, 0.0) for CTC-ST, otherwise (0.0, 2.0).
During inference, we use the beam width b of 10 with a four-
layer LSTM language model having 1024 units. We used length
normalization [29] and softmax smoothing with a temperature
of 0.7 [30]. Our implementation is publicly available.4

2We also tried group normalization [25], but layer normalization was
the best in our implementations.

3RNN-T is optimized via Ltotalrnnt = (1− λctc)Lrnnt + λctcLctc.
4https://github.com/hirofumi0810/neural_sp.

Table 2: Results on TEDLIUM2. Token emission latency (TEL)
is calculated on the test set. ♠SpecAugment was NOT used.

Model WER [%] (↓) TEL [ms] (↓)
dev test 50th 90th 95th

BiLSTM - Global AED 8.1 7.5 – – –
UniLSTM - RNN-T (b = 5) 11.0 11.0 – – –
UniLSTM - RNN-T 10.7 10.7 – – –
UniLSTM - MoChA♠ 16.3 14.9 280 680 1120
+ StableEmit♠ 13.9 12.7 240 440 640
+ DeCoT-CTC (δ = 12) 12.4 10.7 240 400 480
+ DeCoT-CTC (δ = 16) 12.5 11.1 280 440 520

+ DeCoT (δ = 16) 12.4 10.7 280 440 560
+ StableEmit 12.0 10.7 240 360 440

+ CTC-ST 13.5 11.3 200 360 480
+ StableEmit 11.7 10.9 200 320 440

Conformer - Global AED 7.3 7.0 – – –
UniConformer - CTC 12.1 11.2 240 320 400
UniConformer - RNN-T 8.5 8.2 – – –
UniConformer - MoChA 9.6 8.8 320 480 640
+ StableEmit 9.1 8.4 240 480 480
+ DeCoT-CTC (δ = 8) 8.8 8.4 240 400 480
+ DeCoT-CTC (δ = 12) 8.5 8.4 320 480 480

+ DeCoT (δ = 8) 8.5 8.5 240 400 480
+ StableEmit 8.7 8.7 240 320 400

+ DeCoT (δ = 12) 8.7 8.5 320 480 560
+ StableEmit 8.6 8.2 240 400 480

+ CTC-ST 8.9 8.8 240 320 400
+ StableEmit 9.3 8.5 240 320 400

4.2. Main results
We summarized the results in Table 2. We used forced align-
ment results to evaluate the token emission latency (TEL) [4]
from the ground-truth acoustic boundary. We report median,
90th, and 95th percentile latency calculated on the test set.

4.2.1. UniLSTM encoder models

We first confirmed significant improvement by StableEmit over
the baseline UniLSTM MoChA when SpecAugment was not
used. We activated SpecAugment with alignment regulariza-
tion methods after pre-training the baseline model to stabilize
the training [7, 10]. While both CTC-ST and DeCoT were ef-
fective, the combination with StableEmit brought further im-
provements with an additional TEL reduction. We confirmed
that DeCoT-CTC was also effective with a smaller δ than that
in DeCoT because CTC also had a delay. Specifically, applying
StableEmit to CTC-ST showed relative WER improvements of
13.3% (dev) and 3.5% (test), and absolute TEL reductions of
40ms and 80ms in the 90th and 95th percentile, respectively.
Compared to the baseline model, the TEL was reduced by 80ms,
160ms, and 240ms in the 50th, 90th, and 95th percentile, re-
spectively. We also observed that StableEmit was effective in
reducing the tail of TEL distributions for DeCoT.

4.2.2. UniConformer encoder models

Next, we applied StableEmit to the UniConformer models. Un-
like the UniLSTM models, we activated SpecAugment from
scratch and activated Llatency and Lqua after running for 10
epochs, without pre-training. Firstly, we observed a significant
improvement from the UniLSTM models with the Conformer
encoder. StableEmit was also effective in this case, leading to
relative WER improvements of 5.2% (dev) and 4.5% (test) and
absolute reduction of the median TEL by 80ms. Leveraging
alignment information further reduced the TEL and WER in
some cases. In this regard, we observed that alignment path
restriction (DeCoT and DeCoT-CTC) was more effective than
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Table 3: Effects of boundary threshold and loss weight on
TEDLIUM2. The encoder is UniConformer.

λse τ
WER [%] (↓) sub / ins / del TEL [ms] (↓)
dev test dev 50th 90th

0.0

0.5 9.58 8.76 4.88 / 1.55 / 3.15 320 480
0.4 9.50 8.48 4.96 / 1.77 / 2.77 320 480
0.3 9.64 8.39 4.95 / 2.16 / 2.52 320 480
0.2 10.11 8.32 5.00 / 2.79 / 2.31 320 480
0.1 11.70 8.70 5.00 / 4.78 / 1.91 240 400

0.0* 0.5 9.80 9.00 4.92 / 1.45 / 3.43 320 560

0.1

0.5 9.13 8.45 4.94 / 1.48 / 2.71 240 480
0.4 9.10 8.47 4.93 / 1.57 / 2.60 240 400
0.3 9.06 8.39 5.06 / 1.61 / 2.40 240 400
0.2 9.12 8.29 5.16 / 1.77 / 2.19 240 400
0.1 9.63 8.45 5.26 / 2.28 / 2.15 240 400

0.1* 0.5 9.13 8.55 4.97 / 1.42 / 2.74 240 480

0.05
0.5

9.15 8.56 4.92 / 1.51 / 2.73 320 480
0.15 9.38 8.45 4.90 / 1.73 / 2.76 240 400
0.2 10.01 8.99 4.86 / 2.47 / 2.67 240 400

*λse was set to 0.1 at test time.

Table 4: Ablation study on TEDLIUM2

Model WER [%] (↓)
dev test

UniConformer - MoChA + StableEmit 9.1 8.4
w/o quantity reg. (λqua = 0 in Eq. (3)) 9.7 9.9
w/o StableEmit (λse = 0 in Eq. (5)) 9.6 8.8
w/o hierarchical downsampling 10.3 10.0

w/o StableEmit 11.1 10.4
w/o CTC loss (λctc = 0 in Eq. (3)) 9.2 8.8
LayerNorm→ BatchNorm 31.3 23.4

UniConformer - RNN-T 8.5 8.2
w/o hierarchical downsampling 8.7 8.4
w/o CTC loss (λctc = 0) 8.7 8.6
LayerNorm→ BatchNorm 8.8 8.2

CTC-ST in terms of WER while CTC-ST reached the same
level of TEL as the pure CTC model without external align-
ment. Although the gains became smaller than those of the
UniLSTM models, we attributed it to the larger downsampling
factor, which improved the baseline performance significantly,
as shown in Section 4.4.

4.3. Analysis
Next, we study the effect of a discount factor λse (for training)
and a threshold τ for selection probabilities (for testing). We
used the UniConformer encoder for this purpose. The results in
Table 3 showed that reducing τ from 0.5 slightly reduced WER
regardless of the use of StableEmit. However, the model trained
with StableEmit consistently outperformed the baseline in both
WER and TEL and was robust to a small τ . Furthermore, we
also set λse to 0.1 during testing, but this did not improve WER
nor TEL. This verifies that the confidence of pi,j at test time is
increased by StableEmit. For simplicity, we keep τ = 0.5 in all
other experiments.

We also investigate the effect of different values of λse. In-
creasing λse reduced the 90th percentile TEL by 80ms while at
the cost of WER. Regarding error types, StableEmit success-
fully reduced the deletion errors while a strong constraint by a
small τ or a large λse resulted in increasing the insertion errors.

4.4. Ablation study
We also conduct the ablation study in Table 4. We observed that
the quantity regularization was essential for StableEmit. The hi-

Figure 1: Visualization of selection probabilities and CTC out-
puts from UniLSTM MoChA and the input spectrogram. Yellow
regions represent high probabilities.

Table 5: Results on Librispeech. TEL was averaged over the
test-clean and test-other sets.

Model
WER [%] (↓) TEL [ms] (↓)

dev test 50th 90thclean other clean other

UniConformer - RNN-T 2.8 8.2 3.1 8.5 – –
UniConformer - MoChA 2.6 7.6 2.8 7.9 400 560

+ StableEmit 2.9 7.5 3.0 8.2 320 480

erarchical downsampling and layer normalization were also key
ingredients when the UniConfomer encoder was used. More-
over, we found that the hierarchical downsampling, the auxil-
iary CTC loss, and layer normalization were also beneficial for
RNN-T.

4.5. Visualization of selection probabilities
We visualize the selection probabilities pi,j in the UniLSTM
MoChA models in Figure 1. The yellow regions represent high
probabilities close to 1. We used the whole encoder outputs for
visualization. We also plotted the CTC probabilities obtained
from the model trained with CTC-ST and StableEmit. We can
see that the baseline MoChA had blurred probabilities, and Sta-
bleEmit sharpened the distribution, indicating the confidence to
emit a token was increased. CTC-ST shifted some token bound-
aries to the left and sharpened the probability distribution [4].
Moreover, its combination with StableEmit further made them
clearer, showing a complementary effect. The delay became
almost the same as that of CTC.

4.6. Results on Librispeech
Finally, we present results on Librispeech (960h) [31] in Ta-
ble 5. We used the same architecture as previous experiments.
We used λqua = 0.1 for the baseline and (λqua, λse) = (0.2,
0.2) for StableEmit. We observed TEL reductions of 80ms in
the 50th and 90th percentile at the cost of a slight WER degra-
dation. This is because MoChA did not suffer from the deletion
errors on this corpus. However, it outperformed a strong RNN-
T model having the same encoder architecture.

5. Conclusions
In this work, we have proposed StableEmit, a simple alignment-
free solution to reduce the emission latency of MoChA for
streaming ASR applications. We encouraged the model to learn
high selection probabilities in the token boundary detection by
discounting them during training as a regularization. We exper-
imentally demonstrated that StableEmit reduced not only the
emission latency but also the deletion errors. Combining it with
the alignment regularization further reduced the latency.
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tomatic speech recognition dedicated corpus,” in Proceedings of
LREC, 2012, pp. 125–129.

[19] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in Proceedings of ASRU.
IEEE, 2011.

[20] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio aug-
mentation for speech recognition,” in Proceedings of Interspeech,
2015, pp. 3586–3589.

[21] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data augmen-
tation method for automatic speech recognition,” in Proceedings
of Interspeech, 2019, pp. 2613–2617.

[22] R. Sennrich, B. Haddow, and A. Birch, “Neural machine transla-
tion of rare words with subword units,” in Proceedings of ACL,
2016, pp. 1715–1725.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceed-
ings of ICML, 2015, pp. 448–456.

[24] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[25] Y. Wu and K. He, “Group normalization,” in Proceedings of
ECCV, 2018, pp. 3–19.

[26] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with rel-
ative position representations,” in Proceedings of NAACL-HLT,
2018, pp. 464–468.

[27] L. Dong, F. Wang, and B. Xu, “Self-attention aligner: A latency-
control end-to-end model for ASR using self-attention network
and chunk-hopping,” in Proceedings of ICASSP, 2019, pp. 5656–
5660.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[29] K. Murray and D. Chiang, “Correcting length bias in neural ma-
chine translation,” in Proceedings of the Third Conference on Ma-
chine Translation: Research Papers. Association for Computa-
tional Linguistics, 2018, pp. 212–223.

[30] J. Chorowski and N. Jaitly, “Towards better decoding and lan-
guage model integration in sequence to sequence models,” in Pro-
ceedings of Interspeech, 2017, pp. 523–527.

[31] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio books,”
in Proceedings of ICASSP. IEEE, 2015, pp. 5206–5210.

1821


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Hirofumi Inaguma
	Also by Tatsuya Kawahara
	----------

