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Abstract

Non-verbal speech cues such as laughter and fillers, which are
collectively called social signals, play an important role in hu-
man communication. Therefore, detection of them would be
useful for dialogue systems to infer speaker’s intentions, emo-
tions and engagements. The conventional approaches are based
on frame-wise classifiers, which require precise time-alignment
of these events for training. This work investigates the Con-
nectionist Temporal Classification (CTC) approach which can
learn an alignment between the input and its target label se-
quence. This allows for robust detection of the events and ef-
ficient training without precise time information. Experimental
evaluations with various settings demonstrate that CTC based
on bidirectional LSTM outperforms the conventional DNN and
HMM based methods.
Index Terms: Social signals, connectionist temporal classifi-
cation, long-short term memory, human-computer interaction,
computational paralinguistics

1. Introduction
Non-verbal speech cues such as laughter and fillers, which are
called social signals [1, 2, 3], play an important role in human-
to-human communication. Detecting these events is useful for
understanding speakers and informative for dialogue systems
to behave like human. Moreover, it is expected that removing
them leads to improving the performance of automatic speech
recognition (ASR) in natural conversation.

Recently, the importance of detecting social signals attracts
more attention and a number of conventional machine learning
approaches such as Gaussian Mixture Model (GMM) [4], Ge-
netic Algorithm (GA) [5], AdaBoost [6], and Hidden Marcov
Model (HMM) [7] were used in previous studies. Motivated by
the impressive success of neural networks in ASR, neural net-
works based approaches such as Deep Neural Network (DNN)
[8], Convolutional Neural Network (CNN) [9], and Bidirec-
tional Long-Short Term Memory (BLSTM) [10] have been in-
troduced and shown to outperform other models. In these ap-
proaches, models are generally trained as frame-wise classifiers.
However, they are not appropriate for this task from two points
of view.

Firstly, in terms of information retrieval, our main purpose
is to detect the occurrence of social signal events in a huge num-
ber of candidates [11], so we want to detect these events ro-
bustly on the event unit rather than the frame unit. Secondly,
for the classification training, the frame-level target labels are
required. It is expensive to make frame-level annotation man-
ually, especially for social signals because their boundaries are
unclear compared with utterance boundaries, and in the case of
conducting forced alignment using the pre-trained classifier, the
quality of the target labels depends on the model.
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Figure 1: Decoding in the BLSTM-CTC network

To address these issues, in this study, we investigate direct
detection of the occurrence of social signals in natural conver-
sation using Connectionist Temporal Classification (CTC) [12]
(see Figure 1), which conducts optimization over all possible
frame-level sequences and has been recently successful in end-
to-end speech recognition systems [13, 14, 15, 16]. The CTC
approach removes the need to conduct segmentation in the train-
ing set and has potential of improving robustness of detection.
As another end-to-end approach, the attention mechanism is
also successful in machine translation [17], speech recognition
[18], and image captioning [19]. But it is difficult to identify
the occurrence timing of events by this approach, unlike CTC.

In this study, we confirm that the proposed CTC model out-
performs the conventional frame-wise classifiers combined with
HMM even without time information during training, and also
investigate several methods for generation of the target labels
using rough transcripts. We will show that the BLSTM-CTC
model can detect social signal events in generally actual timing
although the CTC algorithm does not guarantee the alignment
of label spikes with the corresponding input frames. Further-
more, an additional experiment using more kinds of social sig-
nals is also conducted.

The remaining part of this paper is organized as follows. In
Section 2, we describe the purpose of detecting social signals
and related works. In Section 3, we describe the BLSTM-CTC
model and how to generate the target labels for the CTC net-
work. Section 4 describes the corpus and Section 5 details the
experimental results. We conclude this paper in Section 6.

2. Detection of Social Signals
2.1. Social Signals

Social signals [1, 2, 3] are non-verbal speech cues, which carry
information on speakers’ mental states in natural conversation.
In this study, we adopt laughter, filler, backchannel, and dis-
fluency as social signal events because these events are easy
to observe and express, and familiar to us. Each vocalization
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has some important roles. Laughter relieves the meaning of
the preceding utterance and helps speakers express their emo-
tions and personalities [20, 21, 22]. Fillers (vocalizations like
“uhm”, “eh”, and “ah” etc.) are used to hold the floor in order to
recollect thoughts or prevent listeners from breaking the speak-
ing turn [23]. Backchannel feedback (vocalizations like “yeah”,
“right”, and “okay” etc.) is used to express that listers are pay-
ing attention and understanding, and encourage the speaker to
continue [24]. Disfluency [25] has several forms such as repeti-
tions, repairs and false starts.

Detecting these events is useful for inferring speakers’ emo-
tion states, intentions, personalities, and engagements. In addi-
tion, it can be informative for dialogue systems to behave as
we do. Moreover, it is expected that removing them leads to
improving of the performance of ASR in natural conversation.
There is a “Chicken and Egg” problem between detection of so-
cial signals and the improvement of performance in ASR. When
detecting social signals, it is expected that the detection per-
formance is improved by separating social signals from other
phonemes. For example, in order to recognize laughing utter-
ances, it is necessary to detect laughter and recognize what is
spoken. On the other hand, when recognizing speech in natu-
ral conversation, it is known that recognition errors often occur
around social signals. Therefore, training them all together can
lead to the improvement of both performances. We formulate a
unified framework in Section 5.2.

2.2. Related Works

In the Interspeech 2013 Computational Paralinguistics Chal-
lenge (ComParE) [26], social signal detection was one of main
tasks and many approaches were proposed [4, 6]. They focused
on frame-wise classification of social signal events based on
Unweighted Average Area Under the Curve (UAAUC) metric.
The best system of the challenge was based on DNN [8], and so-
cial signal detection receives more attention and various models
have been proposed afterwards [5, 7, 27], especially neural net-
work based models [9, 10]. These models are generally trained
as frame-wise classifiers, and often show additional improve-
ment of UAAUC by posterior smoothing. However, Gosztolya
[11] mentions that smoothing posteriors drastically degrades
the performance when evaluating them on the event unit using
HMM. This is because likelihoods of laughter and filler events
become relatively lower than the “garbage” class, which leads
to high precision and low recall. Therefore we need to evaluate
with precision, recall, and F-measure for event-level detection.

3. Bidirectional LSTM-CTC

3.1. Bidirectional Long-Short Term Memory

Recurrent Neural Networks (RNNs) can exploit context infor-
mation, and among them Long-Short Term Memory (LSTM)
[28], which can access long-range context by introducing mem-
ory blocks to regulate the flow of information, has become suc-
cessful. By assuming that ASR transcribes an IPU unit, we
leverage future context in the IPU as well. In this case bidirec-
tional LSTM (BLSTM), where two separate forward and back-
ward layers are fed into the same next output layer [13], can
detect social signal events more accurately than unidirectional
models.

3.2. Connectionist Temporal Classification (CTC)

In the conventional neural network training such as cross en-
tropy or mean square error criterion, where the length of input
frames is the same as that of its target label sequence, the train-
ing data must be aligned frame by frame to the input. The Con-
nectionist Temporal Classification (CTC) [12] uses a loss func-
tion for sequence labeling where the input and the target label
sequence have different lengths without pre-segmentation. CTC
works together with RNNs and is applied after a softmax layer
following RNNs. The key idea of CTC is to introduce a blank
label, which means the network emits no labels, and to suppress
frame-wise outputs including repetitions of the same labels into
the sequence of target outputs (e.g., phonemes or characters).
Given an input sequence X = (x1, . . . ,xT ), CTC trains the
model to maximize the probability distribution P (l|X) for the
corresponding target label sequence l of length U(≤ T ). This
distribution is represented by a summation of all possible frame-
level intermediate representations π = (π1, . . . , πT ) (here af-
ter, CTC path):

P (l|X) =
∑

π∈Φ(l)

P (π|X)

where Φ(l) is the set of CTC paths allowing insertion of blank
labels and repetition of non-blank labels to l, i.e., Φ−1(π) = l.
Then, if lu ∈ L = {1, . . . ,K}, the softmax layer is composed
of |L ∪ {blank}| = K + 1 units. Based on the conditional in-
dependence assumption, the posterior P (π|X) is decomposed
as follows:

P (π|X) =

T∏
t=1

yt
πt

where yt
k is the k-th output of the softmax layer at time t,

which denotes the occurrence probability of the corresponding
label. The probability distribution P (l|X) is computed effi-
ciently with the forward-backward algorithm.

For example, in the case that a laughter (Laughter)
and a filler event (Filler) occur across an utterance
(phone1 phone2 phone3) in this time order, the target label
sequence is given as follows:

silence Laughter phone1 phone2 phone3 Filler silence

Note that silence means silence, and phonei means the corre-
sponding sequential unit in the utterance.

3.3. Generation of Training Labels for CTC

There are options on how to represent segments other than so-
cial signal events. They are usually subword segments such as
phonemes or silence, but in the SVC corpus they are collectively
annotated as garbage. Though the CTC network can directly
learn the alignments between input and target label sequences,
target labels corresponding to acoustic events in the input are
required for each utterance. Thus, it is necessary to classify
garbage into the corresponding subword units, at least speech or
silence. Since there are not any transcripts in the SVC corpus,
we try to estimate approximate subword units by the following
method. At first, we conduct speech recognition on each audio
clip using Kaldi Toolkit [29] and get sequences of 41 kinds of
subword labels (40 phones and silence) with time information.
We use the acoustic model and language model trained with the
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Figure 2: How to generate the target labels to the CTC network

WSJ (Wall Street Journal) corpus. Next, these resulting sub-
word labels and manually annotated laughter and filler labels
are integrated along the time sequence, which makes 43 kinds
of labels in total (40 phones + silence + laughter + filler). Fi-
nally, three replacement patterns are considered as follows (see
Figure 2):

(a) replacing all phone labels and silence label with garbage
labels,
- 3 classes: garbage + laughter + filler

(b) replacing all phone labels with single speech labels,
- 4 classes: speech + silence + laughter + filler

(c) using all subword labels as is.
- 43 classes: 40 phones + silence + laughter + filler

In this study, we used the time annotation of laughter and filler
for alignment with ASR results in order to generate the final
label sequence, but these processes are not needed if we have
transcripts. In fact, we do not use time information at all in the
experiment in Section 5.2.

4. Corpus
4.1. The SSPNet Vocalization Corpus (SVC)

The SSPNet Vocalization Corpus (SVC) was used in the So-
cial Signals Sub-Challenge of the Interspeech 2013 Computa-
tional Paralinguistics Challenge (ComParE) [26]. The corpus
was made from a collection of 60 phone calls involving 120 sub-
jects (63 female, 57 male), where they were fully unacquainted,
and composed of 2763 audio clips (total 8.4h). Each clip lasts
for 11 seconds and contains at least one laughter or filler event
between t = 1.5 and t = 9.5 seconds (the voice of one speaker
only). Overall, the corpus contains 1158 laughter events (3.6%)
and 2988 filler events (4.9%), and garbage (including speech
and silence) with time information, which were manually anno-
tated. Both types of vocalization can be considered fully spon-
taneous. The data were divided into speaker disjoint subsets for
training (70 speakers, 4.8h), development (20 speakers, 1.5h),
and testing (30 speakers, 2.1h), respectively.

4.2. ERATO Human-Robot Interaction Corpus

This corpus is a collection of Japanese face-to-face spontaneous
dialogue with an android ERICA [30], which was remotely op-
erated by 6 amateur actresses. 91 sessions were recorded and
each session lasts about ten minutes (total 16.8h). There are 91
subjects who talked freely with ERICA. ERICA had a various
social roles and subjects were engaged in dialogue in the cor-
responding social situation. The utterances of operators were
recorded using a stand microphone on the table, and those of

Figure 3: The output of softmax layer of the BLSTM-CTC model
in the SVC corpus. The x-axis shows the time and y-axis shows
the label posteriors by softmax layers. This model was trained
using 43 class labels (40 phones + silence + laughter + filler)
in rough transcripts.

subjects were recorded using a directional microphone. Tran-
scripts and four kinds of labels of social signal events are man-
ually annotated: 984 laughters, 8609 fillers, 6293 backchan-
nels, and 1204 disfluencies. The data were divided into training
(13.4h), development (1.3h), and testing (2.1h) subsets, respec-
tively.

5. Experiments
5.1. Evaluation in SVC

5.1.1. Experimental setup

At first, we conduct experiments using the SVC corpus de-
scribed in Section 4.1. The input features for the BLSTM-CTC
models are 40-channel log-mel filterbank outputs and log en-
ergy (+∆,∆∆), computed every 10 ms. Each input frame
is a 123-dimensional vector. The features are normalized by
the mean and the standard deviation over the training set. The
BLSTM network consists of 5 bidirectional LSTM layers with
256 memory cells per layer and the softmax layer. Optimiza-
tion was performed on minibatches of 64 utterances using RM-
SProp with learning rate 10−3. All the weights were initialized
with the range [−0.1, 0.1] of uniform distribution. Note that
bias vectors of the forget gates were initialized with 1.0 as in
[31]. The dropout ratio of input-hidden and hidden-hidden lay-
ers were 0.8 and 0.5, respectively. All the networks are imple-
mented with TensorFlow [32].

5.1.2. Results

Results in the SVC corpus are shown in Table 1. We adopt pre-
cision, recall, F-measure and their average over all social signal
events as evaluation metrics. Note that we predict social signal
events in case that the label spikes of CTC outputs (posteriors)
exceed 0.5 and regard them as correct detection only when they
are included in the corresponding true intervals, for severe com-
parison with other frame-wise classifiers. We compare the CTC
model with DNN and AdaBoost models combined with HMM
whose state transitional probability values are uniform for the
sake of simplicity because they are evaluated on the event unit
in [11], Although the CTC model does not use time information
for the training stage, it outperforms both AdaBoost and DNN
models, which use time information. When comparing the three
label generation method (a), (b), and (c) mentioned in Section
3.3, contrary to our expectation, using more classes do not lead
to improving the accuracy. This is because the target subword
labels are obtained by ASR, thus not so accurate. As shown in
Figure 3, however, we can confirm that the CTC network can
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Table 1: Accuracy for the event unit detection in the SVC corpus (3 class classification)

Model Laughter Filler F-measure
AveragePrecision Recall F-measure Precision Recall F-measure

AdaBoost-HMM [11] 0.58 0.74 0.65 0.65 0.71 0.68 0.66
DNN-HMM [11] 0.58 0.72 0.64 0.71 0.60 0.65 0.65
BLSTM-CTC ((a) 3 classes) 0.65 0.66 0.66 0.66 0.80 0.72 0.69
BLSTM-CTC ((b) 4 classes) 0.60 0.49 0.54 0.59 0.78 0.67 0.61
BLSTM-CTC ((c) 41 classes) 0.79 0.51 0.62 0.71 0.78 0.74 0.68
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Figure 4: How to insert social signal labels to the correspond-
ing words
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Figure 5: The output of softmax layer of the BLSTM-CTC model
in the ERATO corpus. The x-axis shows the time and y-axis
shows the label posteriors by softmax layers. True labeling is
“ F ha so u de su ne B ha i ”. “ ” means a silence label.

learn the alignment between input and target labels although it
is trained using rough transcripts.

5.2. Evaluation in ERATO HRI corpus

5.2.1. Experimental setup

In addition, we conduct experiments using the ERATO Cor-
pus described in Section 4.2. The experimental setting of the
BLSTM-CTC model is the same as in Section 5.1. In this cor-
pus, we annotate additional social signal events of backchannel
and disfluency. The target labels are composed of 83 kinds of
kana characters, silence, and 4 kinds of social signals, 88 in
total. There is a large variation in the utterance length in the
ERATO corpus, so we sort all utterances in the training set by
length to stabilize the training. In regard with label generation
of social signals, we insert each social signal label in front of the
corresponding word (see Figure 4). This label generation can be
suitable for both social signal detection and speech recognition.

5.2.2. Results

We evaluate detection accuracies in the entire utterance because
the ERATO corpus does not have frame-level annotation. We
regard as correct detection when the predicted social signal la-
bels are included in the corresponding target label sequence.
Table 2 shows detection results in the ERATO corpus. Com-
pared with in Section 5.1.2, fillers were detected with compara-
ble high accuracy, but the accuracy of laughter is slightly lower.
This is because that the ERATO corpus has more laughing utter-
ances than the SVC corpus. Backchannels were detected more

accurately than fillers. However, disfluency could hardly be de-
tected. Disfluency should be detected by considering not only
acoustic but also linguistic features with a language model [25].
Figure 5 show an example of the CTC outputs. From this, it is
observed that the CTC network can learn not only subwords but
also whether they are social signals or not.

Table 2: Accuracy for the event unit detection in the ERATO
corpus

Social signals Precision Recall F-measure
Laughter 0.89 0.35 0.50
Filler 0.75 0.75 0.75
Backchannel 0.86 0.87 0.86
Disfluency 0.44 0.15 0.22

Moreover, in order to see that considering social signals
when constructing the acoustic model leads to the improvement
of the ASR performance, we evaluate two BLSTM-CTC mod-
els based on Character Error Rate (CER). When evaluating the
model considering social signals (Insert), we acquire the out-
put label sequences of the CTC model at first, then remove so-
cial signal labels, before compute CER. From Table 3, CER
by the CTC acoustic model considering social signals outper-
forms the conventional CTC acoustic model which does not
consider them. Therefore, we conclude that acoustic models
should be constructed considering social signals in the case that
many non-verbal cues are observed such as in spontaneous dia-
logue. We will compare the CTC model with the hybrid model
such as DNN-HMM and BLSTM-HMM in the future.

Table 3: Character Error Rate (CER). Insert means the CTC
model which is trained considering social signals events.

CER
BLSTM-CTC 19.1 %
BLSTM-CTC (Insert) 18.6 %

6. Conclusions
In this paper, we address detection of social signals of the event
unit by using the BLSTM-CTC model. We confirmed that the
proposed CTC model outperformed several conventional mod-
els combined with HMM even without time information for the
training stage. The CTC approach has the advantages of not
only removing the requirement of pre-alignment between input
and its target label sequence but also making detection more ro-
bustly. In addition, although the CTC algorithm does not guar-
antee the alignment of label spikes with the corresponding input
sequence, the alignments are generally matched with the actual
timing of the occurrence of social signal events. Finally, another
experiment using the corpus more rich annotation of social sig-
nals was conducted and consistent results was confirmed. For
future work, we will construct a language model considering
the statistical nature of the occurrence of social signals.
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