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ABSTRACT

This work explores better adaptation methods to low-resource lan-

guages using an external language model (LM) under the frame-

work of transfer learning. We first build a language-independent

ASR system in a unified sequence-to-sequence (S2S) architecture

with a shared vocabulary among all languages. During adaptation,

we perform LM fusion transfer, where an external LM is integrated

into the decoder network of the attention-based S2S model in the

whole adaptation stage, to effectively incorporate linguistic context

of the target language. We also investigate various seed models for

transfer learning. Experimental evaluations using the IARPA BA-

BEL data set show that LM fusion transfer improves performances

on all target five languages compared with simple transfer learning

when the external text data is available. Our final system drastically

reduces the performance gap from the hybrid systems.

Index Terms— end-to-end ASR, multilingual speech recogni-

tion, low-resource language, transfer learning

1. INTRODUCTION

Fast system development for low-resourced new languages is one

of the challenges in automatic speech recognition (ASR). Recently,

end-to-end ASR systems based on the sequence-to-sequence (S2S)

architecture [1, 2] are filling up the gap of performance from the

conventional HMM-based hybrid systems and showing promising

results in many tasks with its extremely simplified training and de-

coding schemes [3–5]. This is very attractive when building systems

in new languages quickly. However, models tend to suffer from the

data sparseness problems in the low-resource scenario, especially in

S2S models due to its data-driven optimization.

One possible approach to this problem is to utilize data of

other languages. There are various approaches to leverage other

languages: (a) to train a model multilingually (multi-task learn-

ing with other languages), and then further fine-tune to a particu-

lar language [6], and (b) to adapt a multilingual model to a new

language using transfer learning [6–9] and additional features ob-

tained from the multilingual model such as multilingual bottleneck

features (BNF) [10–13] and language feature vectors (LFV) [14]

(cross-lingual adaptation). To obtain a multilingual S2S model, a

part of parameters can be shared while preparing the output layers

per language [6], and we can further use a unified architecture with

a shared vocabulary among multiple languages [15–17]. Since it

would take much time to train such systems from scratch for many

languages including new languages, we focus on the cross-lingual

adaptation approach (b).

*Part of the work reported here was conducted while the author was
visiting Johns Hopkins University.

While a majority of the conventional transfer learning is con-

cerned with acoustic model, using linguistic context during adap-

tation has not been investigated yet. The research question in this

paper is: Is linguistic context also helpful for adaptation to new lan-

guages? The most common approach to integrate the external lan-

guage model (LM) is referred to as shallow fusion, where LM scores

are interpolated with scores from the S2S model [5,18,19]. Recently,

several methods to leverage an external LM during training of S2S

models are proposed: deep fusion [20] and cold fusion [21]. In deep

fusion, the decoder network in the pre-trained S2S model and an ex-

ternal Recurrent neural network language model (RNNLM) are in-

tegrated into a single architecture by the gating mechanism and only

the gating part is re-trained. In contrast, cold fusion integrates an

external LM during the entire training stage.

In this paper, we investigate methods to fully utilize text data

for adaptation to unseen low-resource languages. We propose LM

fusion transfer, where an external LM is integrated into the decoder

network of the S2S model only in the adaptation stage1, as an ex-

tension of cold fusion. Since the decoder network is already well-

trained in a language-independent manner, the model can better in-

corporate linguistic context from the external LM. The extra cost to

integrate the external LM during adaptation is trivial in the resource

constrained condition. We also investigate various seed multilingual

models trained with 600 to 2200-hours speech data and show the

effect of the amount and variety of multilingual training data.

Experimental evaluations on the IARPA BABEL corpus show

that the LM fusion transfer improves performance compared to sim-

ple transfer learning with shallow fusion when the additional text

data is available. The performance of the transferred models is dras-

tically improved by increasing the model capacity and incorporating

the external LM, and the resulting models perform comparably with

the latest BLSTM-HMM hybrid systems [10]. To our best knowl-

edge, this is the first results for the S2S model to show the com-

petitive performance to the conventional hybrid systems in the low-

resource scenario (∼50 hours).

2. RELATED WORK

The traditional usage of unpaired text data in the S2S framework is

categorized to four approaches: LM integration, pre-training, multi-

task learning (MTL), and data augmentation. In the LM integration

approach, there are three methods: shallow fusion, deep fusion, and

cold fusion as described in Section 1. Their differences are in the

timing to integrate an external LM and the existence of additional

parameters of the gating mechanism. We depict these fusion meth-

1Although we can perform LM fusion during training of the seed multi-
lingual model, we focus on applying it during adaptation because our goal is
to adapt it to a particular language rapidly.
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ods in Fig. 1. In, [19], these fusion methods are compared in middle-

size English conversational speech (∼300h) and large-scale Google

voice search data. However, none of previous works investigated the

effect of them in other languages especially for low-resource lan-

guages, which is the focus of this paper. In [21], the authors show

the effectiveness of cold fusion in a cross-domain scenario. Since the

external LM is more likely to be changed frequently than the acous-

tic model, it is time-consuming to train a new S2S model with the

LM integration from scratch every time the external LM is updated.

In this work, we conduct LM fusion during adaptation to target lan-

guages, which is regarded as a more realistic scenario.

Another usage of the external LM is to initialize the lower layer

in the decoder network with the pre-trained LM [19, 22]. However,

we transfer almost all parameters in a multilingual S2S model (both

encoder and decoder networks), and thus we do not explore this di-

rection. Apart from the external LM, the MTL approach with LM

objective are investigated in [19, 23]. Although the MTL approach

does not require any additional parameters, it gets minor gains com-

pared to LM fusion methods [19].

Recently, data augmentation of speech data based on text-to-

speech (TTS) synthesis is investigated in the S2S framework [24,25].

Since we are interested in the usage of linguistic context during adap-

tation, we leave this direction to the future work.

3. END-TO-END ASR

3.1. Attention-based sequence-to-sequence

We build all models with attention-based sequence-to-sequence

(S2S) models, which can learn soft alignments between input and

output sequences of variable lengths [1]. They are composed of en-

coder and decoder networks. The encoder network transforms input

features x = (x1, . . . ,xT ) to a high-level continuous representa-

tion h = (h1, . . . ,hT ′) (T ′ ≤ T ), interleaved with subsampling

layers to reduce the computational complexity [26]. The decoder

network generates a probability distribution PS2S of the correspond-

ing U -length transcription y = (y1, . . . , yU ) conditioned over all

previous generated tokens:

s
S2S
u = Decoder(sS2S

u−1, yu−1,cu)

PS2S(y|x) = softmax(W o
s
S2S
u + b

o)

where W o and bo are trainable parameters, sS2S
u is a decoder state

at the u-th timestep, and cu is a context vector summarizing notable

parts from the encoder states h. We adopt the location-based scor-

ing function [2]. To encourage monotonic alignments, the auxiliary

Connectionist Temporal Classification (CTC) [27] objective is lin-

early interpolated [28].

During the inference stage, scores from the softmax layer used

for the CTC objective are linearly interpolated in log-scale with a

tunable parameter λ (0 ≤ λ ≤ 1) to avoid generating incomplete

and repeated hypotheses as follows [4]:

lnPASR(y|x) = (1− λ) lnPS2S(y|x) + λ lnPCTC(y|x)

3.2. LM fusion

3.2.1. Shallow fusion

In the conventional decoding paradigm with an external LM, referred

to as shallow fusion, scores from both the S2S model and LM are

linearly interpolated to maximize the following criterion:

y
∗ = arg max

y∈Ω∗

{lnPASR(y|x) + β lnPLM(y)}
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Fig. 1: Overview of language model fusion transfer. LM fusion

transfer is conducted with monolingual data only.

where β is a tunable parameter to define the importance of the ex-

ternal LM. The separate LM, especially trained with a larger exter-

nal text, has complementary effects to the implicit LM modeled in

the decoder network. Therefore, shallow fusion shows performance

gains in many ASR tasks [5, 18, 19].

3.2.2. Cold fusion (flat-start fusion)

While shallow fusion uses the external LM only in the inference

stage, cold fusion [21] uses the pre-trained LM during training of the

S2S model to provide effective linguistic context. The fine-grained

element-wise gating function is equipped to flexibly rely on the LM

depending on the uncertainty of prediction:

s
LM
u = W

LM
d

LM
u + b

LM

gu = σ(W g[sS2S
u ;sLM

u ] + b
g)

s
CF
u = WCF[s

S2S
u ;gu ⊙ s

LM
u ] + b

CF

PS2S(y|x) = softmax(ReLU(W out
s
CF
u + b

o))

where W ∗ and b∗ are trainable parameters, dLM
u is a hidden state of

RNNLM, sLM
u is a feature from the external LM, sCF

u is a bottleneck

feature before the final softmax layer, gu is a gating function, and ⊙
represents element-wise multiplication. ReLU non-linear function is

inserted before the softmax layer as suggested in [21]. We use the

hidden state as a feature from RNNLM instead of logits because we

use the universal character vocabulary for multilingual experiments,

which results in the large softmax layer and increases the computa-

tional time [19].

In the original formulation in [19, 21], scores from the external

LM are not used. We found that linear interpolation of log probabili-

ties from the LM with those from the S2S model during the inference

as in shallow fusion still has complementary effects to improve per-

formance. Therefore, we adopt it in all experiments.

3.2.3. Deep fusion (fine-tuning fusion)

Deep fusion [20] is another method to integrate an external LM dur-

ing training. Unlike cold fusion, deep fusion is applied only for fine-

tuning the gating part after parameters of both the pre-trained S2S

model and RNNLM are frozen. Although deep fusion is formulated

with a scalar gating function in [20], we use the same architecture as

cold fusion in Section 3.2.2 to make a strict comparison. Then, the

difference from the cold fusion is in the timing to integrate the exter-

nal LM (from scratch or in the middle stage) and which parameters

to update after integration (see Figure 1).
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4. TRANSFER LEARNING OF MULTILINGUAL ASR

4.1. Adaptation to a target language

We adapt a seed language-independent end-to-end ASR model to an

(unseen) target language. We investigate the following four scenar-

ios:

multi10: From non-target 10 languages to an unseen target lan-

guage

high2: From 2 high resource languages (English and Japanese) to

an unseen target language

multi10+high2: From the mix of non-target 10 languages and 2

high resource languages to an unseen target language

multi15: From the mix of non-target 10 languages and target 5

languages to a particular target language

The top three conditions are regarded as cross-lingual adaptation.

4.2. LM fusion transfer

During adaptation, all parameters are copied from the seed language-

independent S2S model, then training is continued toward a target

language. We investigate improved adaptation methods by integrat-

ing the external LM during and/or after transfer learning from the

seed model. Three methods are considered as follows:

Transfer + SF: Shallow fusion in Section 3.2.1 is conducted in the

inference stage after adaptation.

Cold fusion transfer (CF-transfer): Cold fusion in Section 3.2.2

is conducted during adaptation. We integrate the external

RNNLM from the start point of adaptation to a target lan-

guage. The softmax layer is randomly initialized before adap-

tation due to the additional gating part.

Deep fusion transfer (DF-transfer): Deep fusion in Section 3.2.3

is conducted after adaptation. DF-transfer is composed of two

stages: (1) adaptation by updating the whole parameters un-

til convergence, and (2) fine-tuning only the gating part after

integrating the external RNNLM. The softmax layer is ran-

domly initialized before stage (2).

5. EXPERIMENTAL EVALUATION

5.1. Experimental setting

We used data from the IARPA BABEL project [29] and selected 10

languages as non-target languages for training the seed language-

independent model: Cantonese, Bengali, Pashto, Turkish, Viet-

namese, Haitian, Tamil, Kurmanji, Tokpisin and Georgian, and 5

languages for adaptation: Assamese (AS), Swahili (SW), Lao (LA),

Tagalog (TA) and Zulu (ZU). Full language pack (FLP) is used for all

experiments except for Section 5.2.3, where limited language pack

(LLP) which consists of about 10% of FLP is used for adaptation.

We sampled 10% of data from the training data for each language as

the validation set. In addition, we used Librispeech corpus [30] and

the Corpus of Spontaneous Japanese (CSJ) [31] as additional high

resources.

We used Kaldi toolkit [32] for feature extraction. The input

features were static 80-channel log-mel filterbank outputs appended

with 3-dimensional pitch features computed with a 25ms window

and shifted every 10ms. The features were normalized by the mean

and the standard deviation on the whole training set. For the vocabu-

lary, we used the universal character set including all characters from

Table 1: Results of baseline monolingual systems. None of adapta-

tion methods is conducted.

Model

WER (%)

AS SW LA TA ZU

(54h) (39h) (58h) (75h) (54h)

Old baseline [7] 73.9 66.5 64.5 73.6 76.4

New baseline 64.5 56.6 56.2 56.4 69.5

+ large units 59.9 50.9 51.7 52.7 65.5

+ shallow fusion 57.4 46.5 49.8 49.9 62.9

BLSTM-HMM 49.1 38.3 45.7 46.3 61.1

all languages [15], resulting in the vocabulary size of 5,353 classes

including 17 language IDs, sos, eos, unk, and blank labels. For mul-

tilingual experiments, we prepended the corresponding language ID

so that the decoder network can jointly identify the correct target

language while recognizing speech [15].

Our encoder network is composed of two VGG-like CNN blocks

[33] followed by a max-pooling layer with a stride of 2 × 2, and 5

layers of bidirectional long short-term memory (BLSTM) [34] with

1024 memory cells, which results in time reduction by a factor of

4. The decoder network consists of two layers of LSTM with 1024

memory cells. For both monolingual and multilingual experiments,

we used the same architecture. Training was performed on the mini-

batch size of 15 utterances using Adadelta [35] algorithm with an

initial epsilon 1e− 8. Epsilon was divided by a factor of 0.01 when

the teacher-forcing accuracy does not improve for the validation set

at each epoch. Scheduled sampling [36] with probability 0.4 and

dropout for the encoder network with probability 0.2 were performed

in all experiments during adaptation. We set the CTC weight during

training and decoding to 0.5 and 0.3, respectively. We also set the

beam width to 20 and the LM weight to 0.3.

For RNNLM, we used two layers of LSTM with 650 memory

cells. All RNNLMs were trained with transcriptions in the parallel

data except for experiments in Table 4. We used stochastic gradient

descent (SGD) for RNNLM optimization. All networks are imple-

mented by ESPnet toolkit [37] with pytorch backend [38].

5.2. Results

5.2.1. Baseline monolingual systems for target 5 languages

First, we present the results of the baseline monolingual end-to-end

systems in Table 1. Our new systems (line 2) significantly outper-

formed the old baseline reported on [7]. The gain mostly came from

adding VGG blocks before BLSTM encoder and one more decoder

LSTM layer though we also tuned other hyper-parameters. Next,

changing the unit sizes of each LSTM layer from 320 to 1024 dras-

tically improved the performance. This is surprising because in-

creasing the number of parameters often makes the model overfit

to the small amount of training data. Finally, shallow fusion with the

monolingual RNNLM further boosted the performance although the

RNNLM was trained with the small amount of transcriptions only.

We use this setting as default in the rest of experiments.

We also built BLSTM-HMM hybrid systems for comparison.

The BLSTM-HMM architecture includes 3 BLSTM layers each with

512 memory cells and 300 projection units2. The BLSTM acous-

tic model was trained using the latency control technique with 22

past frames and 21 future frames. The acoustic model receives 40-

dimensional filterbank features as input. N-gram language model is

built with the training transcriptions. WERs by our end-to-end sys-

2Increasing the unit size did not lead to any improvement.
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Table 2: Results of adaptation from the different seed language-

independent models. Shallow fusion with the corresponding mono-

lingual RNNLM was conducted.

Seed hours
WER (%)

AS SW LA TA ZU

multi10 643 53.4 41.3 46.1 46.4 60.2

high2 1,472 57.8 45.0 48.6 49.4 61.9

multi10+high2 2,115 53.2 40.7 45.1 45.3 58.5

multi15 929 53.4 40.6 45.0 46.1 58.8

multi15 w/o FT 929 56.2 44.2 47.1 47.8 60.6

(FT: fine-tuning to a target language)

tems with shallow fusion are close to those of the hybrid system, just

3.6 and 1.8 % absolute difference for Tagalog and Zulu, respectively.

5.2.2. Comparison of seed language-independent models

We compared the seed language-independent models for adaptation

to target languages. All models were transferred, and shallow fu-

sion with the corresponding monolingual RNNLM trained with the

parallel data was performed. The results are shown in Table 2. The

overall performance was significantly improved by transfer learning.

The transferred S2S models achieved comparable WER to BLSTM-

HMM for Tagalog and outperformed for Zulu in Table 1. We can see

that multi10 model is generally better than high2 model despite the

smaller data size, and combination of them (multi10+high2) gives

slight improvement. On the other hand, multi15 model that includes

the target language does not lead to further improvement even af-

ter fine-tuning. We can conclude that the diversity of languages

is more important than the total amount of training data, and 10

languages are almost sufficient for learning language-independent

feature representation and generalized to other languages well [6].

Since multi10 shows the competitive results to multi10+high2 only

with one third training data, we use multi10 as the seed model and

investigate cross-lingual adaptation in the following experiments.

5.2.3. Effect of LM fusion transfer

The results of our proposed LM fusion transfer are given in Table

3. When training S2S models from scratch, there is no difference

among all fusion methods. When transferred from the language-

independent S2S model, significant improvement is observed by in-

tegrating the external RNNLM. Shallow fusion was more effective

than when training the S2S models from scratch in Table 1 because

the multilingual training led to generalization and the affinity for the

external LM was enhanced. CF-transfer got some improvements

compared to transfer learning with shallow fusion for 3 target lan-

guages, but the effects of DF-transfer and CF-transfer are not signif-

icant. This is because RNNLMs were trained with text in the small

parallel data only, therefore linguistic context during adaptation was

not so effective. However, CF-transfer in Tagalog outperformed the

monolingual hybrid system in Table 1. When compared to the previ-

ous work using the same data [7], CF-transfer yielded 21.6% gains

relatively on average. Furthermore, 6.8% gains were achieved from

transfer learning without the external LM.

To investigate the effect of additional text data, we evaluate the

LM fusion transfer with LLP on each target language (∼10 hours).

The results are shown in Table 4. We used monolingual RNNLM

trained with LLP (parallel data) and FLP (∼50 hours), respectively.

The latter setting of a small speech data set (∼10 hours) and a larger

text data set (∼50 hours) is regarded as a more realistic scenario in

low-resource languages. When training S2S models from scratch,

Table 3: Results of LM fusion transfer on FLP (∼50h)

Model
WER (%)

AS SW LA TA ZU

Transfer [7] SF 65.3 56.2 57.9 64.3 71.1

Scratch

— 59.9 50.9 51.7 52.7 65.5

SF 57.4 46.5 49.8 49.9 62.9

DF+SF 57.5 46.4 49.9 49.9 62.6

CF+SF 57.5 47.3 50.0 50.2 62.9

Transfer
(multi10)

— 56.4 46.4 48.6 50.1 63.5

SF 53.4 41.3 46.1 46.4 60.2

DF+SF 53.5 41.2 46.2 46.2 59.9

CF+SF 53.6 41.6 45.9 46.2 59.5

(SF: shallow fusion, DF: deep fusion, CF: cold fusion)

Table 4: Results of LM fusion transfer on LLP (∼10h)

Model
LM
data

WER (%)
AS SW LA TA ZU
(8h) (9h) (9h) (9h) (9h)

Scratch — — not converge

Transfer
(multi10)

— — 67.5 59.7 60.3 66.2 75.4
SF

LLP
63.3 52.8 57.2 60.8 71.2

DF+SF 68.0 52.4 57.3 60.7 70.9
CF+SF 63.2 52.8 58.4 60.6 71.0
SF

FLP
62.7 51.7 56.4 60.0 71.0

DF+SF 66.8 50.7 56.1 60.0 69.9
CF+SF 61.7 50.3 56.0 57.9 69.8

all models could not converge in our implementation even when re-

ducing the unit sizes. The Babel corpus is mostly composed of con-

versational telephone speech (CTS), so it is difficult to optimize the

S2S model from scratch with just around 10-hour training data. In

the transfer learning approach, all three fusion methods got signif-

icant gains by using the external LM except for deep fusion in As-

samese. For RNNLM trained with LLP, all fusion methods achieved

a larger improvement than in Table 3. Interestingly, WER signifi-

cantly dropped even when each RNNLM was trained with 10-hour

data only. But all fusion methods show similar performance. In con-

trast, CF-transfer significantly outperformed simple transfer learning

with shallow fusion on all 5 target languages when the RNNLM was

trained with FLP, which is five-times larger than LLP. Therefore, we

can conclude that linguistic context is helpful for adaptation when

additional text data is available. This shows CF-transfer in Table

3 has the potential to surpass transfer learning with shallow fusion

if we can access to additional text data3. In summary, CF-transfer

yielded relative 10.4% and 2.3% gains on average compared to trans-

fer learning without and with shallow fusion, respectively.

6. CONCLUSION

We explored the usage of linguistic context from the external LM

during adaptation of the language-independent S2S model to target

low-resource languages. We empirically compared various LM fu-

sion methods and confirmed their effectiveness in resource limited

situations. We showed that cold fusion transfer is more effective than

simply applying shallow fusion after adaptation when additional text

is available, which means linguistic context is also helpful in addi-

tion to acoustic adaptation. Our S2S model drastically closed the

gap from the BLSTM-HMM hybrid system.

3Since the provided data only can be used for system training in BABEL
rules, we do not explore to crawl text data from the WEB.
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