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ABSTRACT

Social signals such as laughter and fillers are often observed in nat-
ural conversation, and they play various roles in human-to-human
communication. Detecting these events is useful for transcription
systems to generate rich transcription and for dialogue systems to
behave as we do such as synchronized laughing or attentive listen-
ing. We have studied an end-to-end approach to directly detect social
signals from speech by using connectionist temporal classification
(CTC), which is one of the end-to-end sequence labelling models.
In this work, we propose a unified framework that integrates so-
cial signal detection (SSD) and automatic speech recognition (ASR).
We investigate several reference labelling methods regarding social
signals. Experimental evaluations demonstrate that our end-to-end
framework significantly outperforms the conventional DNN-HMM
system with regard to SSD performance as well as the character er-
ror rate (CER).

Index Terms— Automatic speech recognition, social signals,
connectionist temporal classification, end-to-end training

1. INTRODUCTION

Social signals [1-3] which are used to accompany linguistic content
in utterances suggest mental states such as reactions and thinking.
They include laughter, fillers and backchannels. These play an im-
portant role in human communication, and thus will be useful for
intelligent machines to interpret the user’s mental states and gener-
ate appropriate responses.

Recently, the importance of detecting social signals has at-
tracted more attention and various conventional machine learning
approaches have been investigated [4—11]. These models are gener-
ally trained as frame-wise classifiers, and pre- and post-processing
are required. On the other hand, as mentioned in [12], we need
to detect the occurrence of social signal events robustly on the
event-level metric rather than frame-level metric for real-world ap-
plications. We have studied an end-to-end approach to directly
detect the occurrence of social signals from speech [13] using bidi-
rectional long-short term memory (BLSTM) [14] with connectionist
temporal classification (CTC) loss [15], which has been successful
in end-to-end speech recognition [16-19] and allows for optimiz-
ing model parameters without pre-segmentation of target labels by
marginalizing probabilities of all possible frame-level alignments.

Although social signal detection (SSD) and automatic speech
recognition (ASR) have complementary relationships, they have
been dealt with independently. With regard to SSD, it is expected
that rich information of not only occurrences but also types of fillers
or disfluencies and transcriptions of laughing utterances are acquired
by the joint modeling of social signals together with other phonetic
or morphological information, which would lead to the improvement
of detection performance. At the same time, with regard to ASR,
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it is also expected that auxiliary information of utterances such as
social signals helps ASR performance improve.

In this study, we propose a unified framework that integrates
SSD and ASR by utilizing the potentials of CTC. Modeling this
framework in an end-to-end manner leads to a simple architecture
without any components such as special language models for social
signals. We expect that joint modeling makes it possible to capture
boundaries of social signals while recognizing subword units, which
leads to the improvement of performance of both tasks. Thus, we
investigate several reference labelling methods regarding social sig-
nals. Our end-to-end framework significantly outperforms the con-
ventional cascaded model, where social signals are detected by a
language model following a DNN-HMM acoustic model, in both
the SSD and character-level ASR performance. We also show that
the joint framework of SSD and ASR leads to rich transcription in-
cluding social signals without degradation of ASR performance.

2. SOCIAL SIGNAL DETECTION (SSD)

2.1. Roles of social signals

Social signals [1-3] are useful for estimating a speaker’s mental
states, such as emotions, engagements, personalities, and intention.
They are informative for dialogue systems to generate human-like
behaviors such as synchronized laughing and attentive listening.
Social signals are composed of behaviors of various modalities and
classified into audio (vocalizations) and visual information (pos-
tures, gestures, facial expressions, and gaze etc.). In this study, we
focus on four vocal social signal events: laughter, fillers, backchan-
nels, and disfluencies because these are easy to observe in natural
conversation and familiar to us.

Each vocalization has some important roles. Laughter relieves
the meaning of the preceding utterance and helps speakers express
their emotions and personalities [20-23]. Fillers (vocalizations like
“uhm”, “eh”, and “ah” etc.) are used to hold the floor for recol-
lecting thoughts or preventing listeners from breaking the speak-
ing turn [24]. Backchannels (vocalizations like “yeah”, “right”, and
“okay” etc.) are used to express that listeners are paying attention,
understanding, or showing agreement, and to encourage the speaker
to continue [25]. Disfluencies [26] suggest a trouble in utterance
generation, and have several forms such as repetitions, repairs and
false starts.

2.2. Related work

Social signal detection (SSD) has attracted much recent attention,
including being selected as one of the main tasks in the Interspeech
2013 Computational Paralinguistics Challenge (ComParE) [27], and
a number of approaches have been investigated such as Gaussian
mixture model (GMM) [4, 5], genetic algorithm (GA) [6], AdaBoost
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[71, and hidden Marcov model (HMM) [8]. As in the fields of ASR,
recently deep learning approaches have been impressively success-
ful [9-11,28]. These models are generally trained as frame-wise
classifiers and evaluated by the frame-level metric such as Area Un-
der the Curve (AUC), but detecting social signals frame by frame is
not effective from three viewpoints.

Firstly, in terms of information retrieval, our main purpose is to
detect the occurrence of social signal events robustly among various
utterances [12]. Secondly, in the training stage, frame-level target
labels are required because the length of input speech frames must
be the same as that of its target label sequence. It is expensive to
make frame-level annotation especially for social signals because
their boundaries are unclear compared with utterance boundaries,
80 it is prone to subjective factors to decide their boundaries. If we
conduct forced alignment, the quality of the target labels depends
on the pre-trained classifier. Thirdly, in the detection stage, post-
processing such as threshold processing and smoothing using HMM
is also needed after frame-level classification.

Therefore, we have investigated an end-to-end approach to di-
rectly detect social signals from speech using BLSTM-CTC [13].
We have confirmed that this approach leads to robust detection of
social signals on the event-level metric such as F score.

3. JOINT SOCIAL SIGNAL DETECTION AND
AUTOMATIC SPEECH RECOGNITION

3.1. System overview

Social signal detection (SSD) and automatic speech recognition
(ASR) are considered to be in a complementary relationship. How-
ever, they have been treated as separate problems conventionally.

As mentioned above, some studies with regard to SSD addressed
direct detection of laughter and fillers from speech [4—11], but they
have dealt with only the occurrences of social signals, and their types
or transcription have not been considered. Other studies [26,29] in-
vestigated extraction of fillers and disfluencies from ASR results in
a cascaded manner, which depends on ASR performance and their
processing is complicated. By the joint modeling of social signals
together with other phonetic or morphological information, it is ex-
pected that detection performance would be improved.

On the other hand, from the standpoint of ASR, it is generally
difficult to recognize utterances around ambiguous speech frames
such as social signals. Some of them such as laughter can be mod-
eled with non-speech classes, but many of them such as fillers and
disfluencies have segmental information that can be transcribed but
hardly modeled except for typical fillers and backchannels. Thus,
it is also expected that auxiliary information of social signals helps
improve ASR performance.

In this work, we focus on the complementary relationship be-
tween SSD and ASR, and propose a unified framework where social
signals are directly detected from speech while recognizing subword
units based on BLSTM-CTC. We expect this framework leads to the
improvement of both performances. In addition, a more simplified
architecture without any special components for social signals can be
realized by an end-to-end modeling. If we can distinguish between
social signals and subword units, rich information will be obtained
regarding not only occurrences but also types or transcription of the
social signals.

The overall system architecture is shown in Figure 1. A label se-
quence, which includes both social signals and subword units, is de-
coded from outputs of the softmax layer following stacked BLSTM
layers. This is used for the SSD task. For the ASR task, the final
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Final ASR transcript

Laughter
Tha uh you know that's like ... FEillers
f Disfluencies
Decoded results f

DstareThaDena FstarehFena_FstarYOU_KNOWF g Lsorcthat's_like.. Leng

Decoding

| Frame-level outputs |

I Softmax layer I

I Stacked BLSTM layers I

. Input
Fig. 1: System overview

transcript is obtained by removing all social signal labels from the
label sequence.

3.2. Connectionist temporal classification (CTC)

Connectionist temporal classification (CTC) [15] is an objective
function for sequence labelling problems where the input and target
label sequence have different lengths, and allows for learning an
alignment between them without pre-segmentation. To bridge the
gap between input and target label sequence lengths, CTC introduces
an extra blank label, which means the network emits no label at a
given time, and also allows repetitions of the same labels possibly
interleaved with blank labels. A class corresponding to blank labels
is added to nodes in the softmax layer. Therefore, the output nodes
are composed of subword units, social signals, and a blank label.
Given an input sequence X = (@1, ..., @) and the corresponding
target labels I = (I1,...,ly) (U < T), the CTC network can be
trained to optimize the negative log probability using the probabil-
ity distribution P(1|X) (network outputs) based on the maximum
likelihood criterion. Thus, the objective function is formulated as
follows:

Lero(X) =—-InP(1|X)

Here, P(1|X) is marginalized by a summation of probabilities of all
possible frame-level alignments.

PUX)= >

we@—1(1)

P(m|X)

where 7w = (1, ..., 7r) is output labels of the softmax layer, and
this intermediate representation including blank labels is called a
CTC path. (1) is the set of all CTC paths, and ® is a many-to-
one collapsing function to suppress repeated labels and then remove
blank labels, i.e., ®(7) = l. Assuming the conditional indepen-
dence of outputs at each time step, P(7r| X ), the probability distri-
bution of a CTC path, is decomposed as follows:

T
P(m|X) =[] v,
t=1

where y, is the k-th output of the softmax layer at time ¢, which de-
notes the occurrence probability of the corresponding label. P (1| X))
is computed efficiently with the forward-backward algorithm as in
HMM.
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Original transcript Our transcript (label)

None (baseline) | word; word, words

Table 1: Accuracy for the social signal detection in the ERATO cor-
pus. Prec., Rec., and Fi stand for precision, recall, and Fi score
(F-measure), respectively.

word, word, word, » word, S wordy word, Labelling Social Signals | Prec. ‘ Rec. | F1 Ave. I

Correspond to a social signal Laughter 0.88 0.44 | 0.59
wordy Sstare Wordz Sena Words Filler 0.73 | 0.79 | 0.76

Insertleft . = . 0.59
S (Social signals) € {Laughter, Filler, Backkchannel, Disfluency} Backchannel 0.90 0.75 0.52
© : ’ ’ ’ ) Disfluency 042 | 0.12 | 0.19
} . . . Laughter 080 | 053 [ 0.64

Fig. 2: Reference label generation regarding social singals. .S means I + both Filler 0.70 | 0.83 | 0.76 0.60

a social signal label, which is used in Insert_left. Ssiqrt and Send nsert-bo Backchannel 0.88 | 0.70 | 0.78 :

mean start and end labels of the corresponding social signal, which Disfluency 041 [ 017 | 0.24

are used in Insert_both.

3.3. Generation of reference labels

This section describes how to generate reference labels regarding so-
cial signals for both SSD and ASR tasks. We consider three labelling
methods as follows (see Figure 2).

None (baseline) The same reference labelling as the conventional
end-to-end speech recognition systems, where social signals are not
considered.

Insert_left Each social signal label is inserted on the left side of the
corresponding subword units. This is intended to mark the beginning
of the social signals. At least one acoustic frame must correspond to
these labels in the CTC framework. We presume some acoustic cues
exist around the social signals.

Insert_both The start and end labels of each social signal are in-
serted on both sides of the corresponding subword units. By assum-
ing that there is some acoustic cues at the end as well, we expect the
model to learn rough segmentation of the social signals.

4. EXPERIMENTAL EVALUATION

4.1. System settings

The input features were 40-channel log-mel filterbank outputs plus
energy and their delta and acceleration coefficients, computed ev-
ery 10 ms. Thus, each input frame was a 123-dimensional vector.
The features were normalized by the mean and the standard devi-
ation on the speaker basis. In addition, each set of 3 frames (total
30ms) was stacked and concatenated for reducing the arbitrariness
of the alignment of CTC training [30], which resulted in reducing
the input frame length by a factor of 3. The network consisted of 5
stacked BLSTM layers with 256 memory cells (320 in Section 4.3)
per direction and the softmax layer. Optimization was performed on
mini-batches of 64 utterances (32 in Section 4.3) using Adam [31]
with a learning rate 1.0 x 1073, For stable training, all utterances
in the training set were sorted by their lengths in the early train-
ing stage [17,19]. All weights were initialized with random values
drawn from a uniform distribution with a range [—0.1,0.1]. Bias
vectors of the forget gates in each LSTM layer were initialized with
1.0 [32]. We also clipped the norms of gradients and cell activations
so that they have maximum absolute values 5 and 50, respectively.
The dropout ratio was 0.5 (0.8 in Section 4.3). Beam search de-
coding was performed with a beam width 20. All networks were
implemented with a TensorFlow framework [33]. Note that we did
not use any language models.
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Table 2: Character error rate (CER) in the ERATO corpus. CERs in
Insert_left and Insert_both are computed by removing all social
signal labels from decoded results.

[ Labelling | CER (%) |
None (baseline) 19.41
Insert_left 19.80
Insert_both 19.69

4.2. Evaluation on dialogue corpus
4.2.1. Experimental conditions

In this section, we conduct experiments using the ERATO Human-
Robot Interaction Corpus (ERATO corpus), which is a collection of
Japanese face-to-face spontaneous dialogue corpus recorded with an
autonomous android ERICA [34]. ERICA was remotely operated
by 6 amateur actresses. There are 91 sessions and each session lasts
about 10 minutes (total 14.7 hours). The subjects talked freely with
remotely operated ERICA. ERICA had various social roles and each
subject was engaged in conversation in the corresponding situation.
Recording of operators and subjects were conducted by using a stand
microphone on the table and a directional microphone, respectively.
Transcripts and four kinds of social signal events were manually an-
notated: laughter, fillers, backchannels, and disfluencies'. Reference
labels were composed of 145 kinds of Japanese kana characters, 4
kinds of social signals, space, and noise. We adopted Japanese kana
characters as targets instead of phones because Japanese kana char-
acters include both phonetic and morphological information. The
whole corpus was divided into training (11.8 hours), development
(1.3 hours), and testing subsets (1.6 hours).

4.2.2. Experimental results

Results of SSD experiments using the ERATO corpus are shown in
Table 1. We followed [12] and adopted precision, recall, F; score
(F-measure), and their average over all social signal events as eval-
uation metrics. Fillers and backchannels were detected with com-
parable high accuracy, and laughter was also detected to some ex-
tent although recall was slightly lower. It is very difficult to detect
laughing utterances, where laughing voices and utterances are over-
lapped. The detection performance of disfluencies is also very low
due to the insufficient training data to cover a large variation of them.
However, Insert_both works better than Insert_left in detecting
laughter and disfluencies. These social signals are longer and usually
followed by a short pause, so the ending mark is effective.

!'The number of social signals contained in the ERATO corpus is laugh-
ter: 1131/183, fillers: 8348/741, backchannels: 3424/687, and disfluencies:
1231/163, respectively (train/test).



Table 3: Accuracy for the social signal detection in the CSJ

A e ] evall [ eval2 [
‘ Model ‘ Labelling Social Signals [Prec. | Ree. [ Fy | Prec. [ Ree. [ Fi | Ave. Fy

Insert_left Filler 0.95 0.92 0.93 0.93 0.94 0.93 0.93

CTC - Disfluency 0.75 0.54 0.63 0.63 0.55 0.59 0.61

(w/o LM) Insert.both Filler 0.95 0.93 0.94 0.93 0.93 0.93 0.94

- Disfluency 0.75 | 038 | 0.65 | 0.67 | 058 | 0.62 0.64
DNN-HMM — [ Filler [ 088 | 091 [ 0.89 | 0.83 | 090 | 086 | 088 |
(w/ 3-gram) | Disfluency [ 054 10271036 | 045 [ 024 | 031 | 034 |

In addition, we investigated whether the joint modeling of SSD
and ASR led to the improvement of ASR performance. Table 2
shows the character-level ASR results. We adopted character error
rate (CER) as evaluation metric. Although CER was not improved in
this corpus even when considering social signals, there was no sig-
nificant difference among the three labelling methods. This means
that CTC could detect laughter, fillers, and backchannels robustly
without degradation of ASR performance.

4.3. Evaluation on large-scale lecture corpus
4.3.1. Experimental conditions

In this section, we conduct experiments using a large-scale sponta-
neous speech corpus, Corpus of Spontaneous Japanese (CSJ) [35],
which is one of the largest Japanese speech corpora. The CSJ con-
sists of about 600 hours of spontaneous speech including academic
and simulated lectures, but in this work we focus on the academic
lectures which have been the major target of ASR research using
this corpus, consisting of about 240 hours of training data in total.
There are two evaluation sets (evall and eval2), each of which is
composed of 10 lectures. We picked up different 19 lectures as the
development set. Three types of social signals, laughter, fillers, and
disfluencies were annotated in the CSJ, and we used 150 kinds of ref-
erence labels including Japanese kana characters, filler, disfluency,
space, and noise. Since there are few laughter in academic lectures,
we excluded laughter from the SSD?.

4.3.2. Experimental results

Results of SSD in the CSJ are shown in Table 3. Fillers were de-
tected with high accuracy, and the accuracy of disfluencies also im-
proved thanks to sufficient data compared with Section 4.2. Com-
paring Insert_left and Insert_both, Insert_both slightly outper-
formed Insert_left in filler and disfluency detection as in Section
4.2.

In addition, we compared the detection accuracy of fillers and
disfluencies with a hybrid system, where social signals were detected
by a 3-gram language model and a DNN-HMM acoustic model.
Fillers and disfluencies were treated as separate words and added
into the dictionary. The DNN-HMM acoustic model was composed
of six hidden layers with 2048 nodes and an output layer with 3k
nodes, and trained using 240 hour data (the same training data as
CTC models). Sequence discriminative training was also performed
using SMBR criterion. Word 3-gram model was trained using all
data in the CSJ (about 600 hours). We observed that the end-to-end
framework by BLSTM-CTC significantly outperformed the hybrid
system in both cases of filler and disfluency. It is confirmed that dis-
fluencies are hardly covered by the language model while fillers are
easily covered.

2The number of social signals contained in the CSJ is filler:
442.930/1,720/1,279 and disfluencies: 98,356/388/355, respectively
(train/eval 1/eval2).
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Table 4: Character error rate (CER) in the CSJ

) CER (%)
‘ Model ‘ Labelling evall eval2 Ave.
cTC None (baseline) 7.70 6.11 6.90
(Wio LM) Insertleft 81T 6.36 7.23
Insert_both 8.18 6.34 7.26
DNN-HMM — 8.65 | 744 | 8.04

(w/ 3-gram)
Disfluency Filler
4 ) =) )

Social signals

I T

00 05 10 15 20 25 30 3s 40

Fig. 3: The output posteriors of CTC (Insert_both) in the CSJ. We
can confirm that the CTC could conduct rough segmentation of both
fillers and disfluencies.

Subwords

Next, we evaluated the performance of character-level speech
recognition. Table 4 shows ASR results. There was not statisti-
cally significant differences among three labelling methods of CTC
models, but all of them significantly outperformed the DNN-HMM
system in ASR performance as well as SSD performance. Note that
BLSTM-CTC did not use a word-level lexicon and language models
explicitly while the DNN-HMM system used a word 3-gram lan-
guage model. We can conclude that our end-to-end framework is
suitable for solving both SSD and ASR tasks at the same time, and
this leads to robust detection of social signals with ASR performance
enhancement.

Figure 3 shows examples of the CTC outputs (posteriors) with
Insert_both labelling method. It was observed that the BLSTM-
CTC could recognize not only subword units but also detect bound-
aries of social signals simultaneously. We also found that the CTC
could conduct rough segmentation of social signals by marking both
the beginning and end points of them.

5. CONCLUSION

In this paper, we have proposed a unified framework that integrates
social signal detection (SSD) and automatic speech recognition
(ASR) based on connectionist temporal classification (CTC), which
is one of the end-to-end models. We also investigated several refer-
ence labelling methods regarding social signals and confirmed that
our end-to-end framework by BLSTM-CTC significantly outper-
formed the conventional DNN-HMM system with a language model
in both SSD and ASR performance. CTC could identify rough loca-
tions of social signals. We also found that this framework leads to
rich transcription including social signal information without degra-
dation of ASR performance with two speech corpora. For future
work, we will implement the attention-based model [36, 37], which
is another end-to-end model, to capture relationships more explicitly
between subword units and social signals.
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