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Abstract
This paper describes a multiple-resolution signal analysis to
suppress late reflection of reverberation for robust automatic
speech recognition (ASR). Wavelet packet tree (WPT) decom-
position offers a finer resolution to discriminate the late reflec-
tion subspace from the speech subspace. By selecting appro-
priate wavelet basis in the WPT for speech and late reflection,
we can effectively estimate the Wiener gain directly from the
observed reverberant data. Moreover, the selection procedure is
performed in accordance with the likelihood of acoustic model
used by the speech recognizer. Dereverberation is realized by
filtering the wavelet packet coefficients with the Wiener gain to
suppress the effects of the late reflection. Experimental eval-
uations with large vocabulary continuous speech recognition
(LVCSR) in real reverberant conditions show that the proposed
method outperforms conventional wavelet-based methods and
other dereverberation techniques.
Index Terms: Speech recognition, Robustness, Dereverbera-
tion, Wavelet Packets

1. Introduction
In reverberant environments, smearing of the observed signal by
the effects of reflection causes acoustic model mismatch. Dere-
verberation methods based on the suppression of late reflection
have been proposed [1][2]. An expansion to this work using
multi-band processing is also proposed [3]. In these methods
[1]-[3], it was established that the effects of late reflection is
more detrimental to ASR. In general, estimating late reflection
is pivotal to the effectiveness of discriminating its subspace.
However, the estimation is difficult especially if the late re-
flection subspace overlaps with speech. We have previously
proposed a wavelet filtering approach based on pre-determined
bands [4] . Although this method works well, fixing the bands
limit the ability for the wavelet parameters to effectively cap-
ture the subspaces for both speech and late reflection especially
during mismatch conditions.

In this paper, we address the subspace discrimination prob-
lem with more precision through wavelet packet (WP) analysis.
Late reflection is suppressed by filtering the reverberant wavelet
packet coefficients with a Wiener gain. Wavelet packet tree
(WPT) decomposition is optimized using acoustic model like-
lihood criterion to effectively track both speech and late reflec-
tion, resulting to an accurate Wiener estimate. The WPT which
contains the wavelet basis is kept for the actual online derever-
beration. Fig. 1 shows the online dereverberation scheme. First,
the room reverberation time T60 is estimated. The correspond-
ing WPTs are used to decompose the reverberant speech result-
ing to three WPT decompositions (i.e. late reflection, speech,
reverberant speech). Through the WP analysis using the wavelet
basis associated with the WPT, WP coefficients are calculated

Figure 1: Block diagram of the proposed method.

and used in WP filtering. Finally, the enhanced signal is further
processed to extract features for ASR. Although WP analysis
has been primarily studied for speech enhancement, our study
is focused on its tight integration with ASR.

The paper is organized as follows; Section 2 shows the
concept of the dereverberation approach we adopt. In Section
3, wavelet analysis through WPT is introduced. In Section 4,
we present the method of selecting appropriate WPT based on
the entropy and acoustic model likelihood criterion. The actual
dereverberation based on WP filtering is described in Section 5,
followed by the experimental results in Section 6. Finally, we
conclude this paper in Section 7.

2. Dereverberation Concept
We denote the spectral feature (f :frequency, m:frame) of the
reverberant signal, clean speech signal, and room impulse re-
sponse (RIR) as R(f,m), S(f,m) and H(f,m), respectively.
The reverberant speech model [3] expressed in terms of early
and late reflections is approximated as

R(f,m) ≈ S(f,m)H(f, 0) +
∑D

d=1 S(f,m− d)H(f, d)
≈ E(f,m) + L(f,m)

(1)

where H(f, 0) is the RIR effect to the speech signal S(f,m)
attributing to the early reflection E(f,m). The second term
L(f,m) referred to as late reflection can be viewed as smear-
ing of the clean speech by H(f, d) which corresponds to the
d frame-shift effect of the RIR. D is the number of frames
over which the reverberation has an effect. The early reflec-
tion is mostly addressed through Cepstral Mean Normalization
(CMN) in ASR. Therefore, dereverberation is reduced to sup-
pressing the effects of the late reflection L(f,m). Since the late
reflection can be treated as additive noise formulated in Eq. (1),
dereverberation is simplified to a denoising problem.

3. Wavelet Packet Tree (WPT) Analysis
A one-dimensional wavelet is generally expressed as



Figure 2: Wavelet Packet Tree (WPT) decomposition.

Ψj,k(t) = 2
−j
2 Ψ(2−jt− k), j ∈ Z k ∈ Z , (2)

where t denotes time, j is the depth of the dyadic scale having a
resolution of 2−j , and k is the dyadic translation. Wavelet anal-
ysis offers a flexibility of scaling and translating the wavelets
which controls the degree of representing signals of interest. A
proper choice of these parameters would lead to a better repre-
sentation of signals.

Fig. 2 shows the WPT decomposition method. The scale
j and translation k correspond to the depth and position of the
wavelet packetsw(j, k) in the tree structure. For a WPT decom-
position W , there exists a library of wavelet packets w(j, k),
and for every wavelet packet, a wavelet basis Ψj,k is associated
to it. The wavelet basis contains the orthogonal filter informa-
tion (i.e. high and low pass filters). Every wavelet packet splits
the bandwidth of the signal, and as this process continues down
the tree, the frequency resolution is further refined. Thus, WPT
decomposition is analogous to filterbank analysis. The output of
the WP analysis denoted as c(j, k) are called WP coefficients,
and from this, together with the wavelet basis, we can synthe-
size the original signal x,

x =
∑

j∈Z
∑

k∈Z c(j, k)Ψj,k(t). (3)

The use of the tree structure decomposition allows us to an-
alyze the signal of interest in finer resolution by splitting further
the tree nodes. Although the WP method trades time resolution
with frequency resolution, time is already set when selecting
the window frame for the ASR. Thus, the frequency resolution
is significant in our application.

4. Selecting Wavelet Basis Function
With an appropriate training algorithm, we can select j and k in
the WPT decomposition to capture specific characteristics of a
certain signal of interest. The resulting wavelet packets are sen-
sitive in detecting the presence of this signal given any arbitrary
signal. In our case, we are interested in detecting the power of
speech and late reflection given an observed reverberant signal
to effectively estimate the Wiener gain.

4.1. Entropy-based Decomposition

There exists at least 2N/2 binary subtrees in a complete binary
tree decomposition of a signal with N samples, which may be
a very large number. To control the splitting of the nodes, we
use an entropy-based criterion. We note that over-splitting may
result to a large number of nodes containing insignificant infor-
mation. The resulting leaves of the tree structure represent the
spectral distribution of the signal of interest. For typical speech
signal, WPT should have more frequency resolution in the lower
frequency spectrum in which the speech energy is concentrated,
as depicted in Fig. 3. There exist several entropy-based criteria
as follows [6].

Figure 3: Example of WPT decomposition.

Figure 4: Training wavelet parameters.

• logarithm of the energy entropy:

Ej,k =
∑

i log(x2
i ). (4)

• Shannon entropy:

Ej,k = −
∑

i x
2
i log(x2

i ). (5)

• p norm entropy:

Ej,k =
∑

i |xi|
p p = 1, 2 and 3. (6)

Here, Ej,k is the entropy at each packet and xi are the coeffi-
cients of the signal x in an orthonormal basis at node (j, k). In
each splitting process, the cumulative entropy of two split pack-
ets are compared with the entropy of its source node. Splitting
terminates when the cumulative entropy falls below the entropy
of the source node. Specifically, the entropy-based decomposi-
tion shown in Fig. 3 is realized as follows.

• At node (j,k), calculate the cumulative entropy of the
split packets w(j + 1, u) and w(j + 1, u+ 1):

Cum j+1 ,k = Ej+1,u + Ej+1,u+1 (7)

• if Cum j+1 ,k > Ej,k then split the node

• else terminate, resulting to terminal packet {w(j, k)}

The splitting can be conducted using several entropy cri-
teria, including the three listed above (e = 1 : E) resulting to
W e=1:E tree structures. Using the terminal packets of these tree
structures, we search for the best tree W opt among W e=1:E by

• Synthesizing the signal xe for each tree inW e=1:E using
Eq. (3) (Note that this is possible since each packet con-
tains the wavelet basis ψj,k and the coefficient c(j, k).)

• Select optimal choice W opt by evaluating

opt = arg max
e
P (xe|λ), (8)

where λ is the acoustic model.

We search (e = 1 : E) entropy-based criteria for speech, late
reflection and the reverberant signal, respectively.



4.2. Training WPT for Speech and Late Reflection

For speech, a single WPT to capture the general speech charac-
teristics is sufficient since we are interested in the speech sub-
space in general. In Fig. 4, we illustrate the method of se-
lecting the wavelet packets for clean speech. From the clean
speech database, WPT is trained as described in Section 4.1.
For the acoustic model λs, a Gaussian Mixture Model (GMM)
of 64 components is used. This is a text-independent model
which captures the statistical information of the speech sub-
space. Specifically, when using speech data s Eq. (8) becomes

opt = arg max
e
P (se|λs),

and the resulting tree structure W opt
s is kept.

For late reflection, we discretize T60 from 100 ms to 600
ms with 50 ms interval. WPT selection is conducted for each
of these. By using the method of T60 estimation and synthetic
impulse response generation [5][8][3], we can identify the re-
verberation time T60 among the discretized values mentioned
above. Consequently, we can generate the RIR h (time-domain
equivalent of H in Eq. (1) and its corresponding late reflec-
tion coefficients hl [3]. Then, late reflection observations l are
synthetically generated by convolving the clean speech with
hl. Next, WPT is trained in the same manner as in the clean
speech, except that thresholding is applied to the WP coeffi-
cients prior to synthesis. This ensures that the coefficients are
void of speech characteristics. Speech energy is characterized
with high coefficient values [7] and thresholding sets these co-
efficients to zero.

c̄(j, k)l =

{
0 , | c(j, k)l | > thr
c(j, k)l , | c(j, k)l | ≤ thr

(9)

The thresholded coefficient is synthesized (Eq. 3) back to time
domain l̄ej,k and evaluated against a late reflection model λl̄.
Specifically, Eq. (8) becomes

opt = arg max
e
P (̄le|λl̄),

and the corresponding WPTW opt
l that result to the highest like-

lihood score is kept. λl̄ is trained using the automatically gen-
erated late reflection data with thresholding applied.

The proposed WPT selection makes the signal subspaces of
speech and late reflection to be effectively discriminated from
each other. Thus, W opt

s and W opt
l are of different tree struc-

tures. We note that this is not true when simply using very
high-resolution filterbanks in which subspaces of speech and
late reflection are overlapped, resulting to poor power estimates.

5. Wavelet Packet Filtering
WP filtering is conducted framewise by weighting the contami-
nated WP coefficient c(j, k)r

c(j, k)enhanced = c(j, k)r . κ(j, k), (10)

where the Wiener gain κ(j, k) dictates the degree of suppres-
sion of the late reflection to the observed signal. The general
expression of the Wiener gain is given as

κ(j, k) =
c(j, k)2

s

c(j, k)2
s + c(j, k)2

l

, (11)

where c(j, k)2
s, and c(j, k)2

l are the power estimates for the
clean speech and late reflection, respectively. Specifically, these
are the WP coefficients of the clean speech s and late reflection

l. However, we do not have access to both s and l in the real
scenario, but only to the observed reverberant signal r. By us-
ing the appropriate WPT decomposition W opt

s and W opt
l , we

can estimate the speech power

c(j, k)2
s ≈ c(jopts , kopts )

2

r, (12)

where jopts and kopts are the tree depth and position in the W opt
s

decomposition structure. The power estimate of the late reflec-
tion is given as

c(j, k)2
l ≈

1

D

D∑
d=1

εd . cd(joptl , koptl )2
r, (13)

where cd(joptl , koptl )2
r are the estimates for the previous d

frames (d = 1, ..., D) (see Section 2). εd is the exponential de-
cay of the reflection energy in the previous d frames [8] which
was experimentally derived in [3]. The summation over d rep-
resents the smearing effect of the previous frames to the current
frame. The left side of Eqs. (12)-(13) are the speech and late
reflection power using the actual signal s and l, which is un-
available. The right side is the corresponding approximation
using the observed reverberant signal r, when decomposed us-
ing W opt

s and W opt
l .

In the actual filtering, we use the tree structure of the rever-
berant signal as shown in Eq. (10). But the tree structures for
both speech and late reflection used in calculating the Wiener
gain may be of different depth, resulting to a (usually) shorter
terminal leaves. We extend the leaves of these two to correspond
to the generic structure of the reverberant signal by padding
with zeros. Then, Wiener gain filtering is implemented as de-
scribed above.

6. Experimental Evaluations
We have evaluated the proposed method in a large vocabu-
lary continuous speech recognition (LVCSR) task. The training
database is the Japanese Newspaper Article Sentence (JNAS)
corpus with a total of approximately 60 hours of speech. The
test set is composed of 200 sentences uttered by 50 speakers.
The vocabulary size is 20K and the language model is a stan-
dard word trigram model.

Speech is processed using 25ms-frame with 10ms shift us-
ing Daubechies wavelets. From the enhanced signal via WPT
decomposition, we reconstruct the time-domain signal and ex-
tract features for ASR. The features used are 12-order MFCCs,
∆MFCCs, and ∆Power. The acoustic model is phonetically
tied mixture (PTM) HMMs with 8256 Gaussians in total.

Reverberant training data are synthetically produced with
the automatically generated RIR as described in [3]. The test
data were recorded in a room with known reverberation time:
T60=200ms, 400ms and 600ms. Thus, we used actual reverber-
ant data for evaluation. For reference, the recognition perfor-
mance for clean speech in word accuracy is 94.0%.

6.1. Comparison with Other Methods

The methods compared in Table 1 are as follows;

• (A) Reverberant data (unprocessed) matched against the
clean acoustic model.

• (B) Reverberant data (unprocessed) matched against the
reverberant acoustic model.

• (C) A single-band dereverberation method combining
linear prediction (LP) residual processing and the spec-
tral processing techniques [2].

• (D) Dereverberation based on the multi-band spectral
subtraction [3].



Figure 5: Evaluation against mismatch in reverberant conditions.

Table 1: ASR Result in Word Accuracy (20K LVCSR)
Real reverberant data

Methods 200 ms 400 ms 600 ms
(A) No processing; clean model 68.6% 43.1% 21.4%
(B) No processing; reverb. model 72.2% 49.4% 30.3%
(C) Temporal Dereverberation 76.2% 66.0% 57.1%
(D) Multi-band SS 80.7% 71.4% 61.6%
(E) Wavelet-based Thresh. 76.5% 66.2% 57.8%
(F) Wavelet-based Clustering 77.6% 67.9% 59.0%
(G) Wavelet Filtering (fixed) 83.2% 74.5% 68.6%
(H) WP Filtering (Full decomp.) 83.2%83.2%83.2% 73.3%73.3%73.3% 63.7%63.7%63.7%
(I) WP Filtering (Proposed) 84.5%84.5%84.5% 76.8%76.8%76.8% 71.5%71.5%71.5%

• (E) Thresholding in the wavelet domain that incorporates
voice activity detection and statistical information [7].

• (F) Wavelet-based method that clusters extrema of the
LP coefficients in separating clean components from re-
verberant components [9].

• (G) Wavelet filtering with pre-defined fixed bands [4].
• (H) WP filtering with conventional WPT full decompo-

sition
• (I) WP filtering with proposed WPT decomposition sep-

arately conducted for clean speech, late reflection and
reverberant speech.

Table 1 shows the word accuracy for different T60. The acoustic
model for each of the methods compared in Table 1 is matched
corresponding to the processing of each method. In this table,
the proposed method (I) consistently and significantly outper-
forms other existing methods. Moreover, it is apparent that by
using appropriate WPT decomposition (I), an improvement in
the recognition performance is achieved from (H). This shows
that using different tree structures appropriate for speech and
late reflection is more effective than using the simple full WPT
decomposition.

6.2. Evaluation in Mismatched Conditions

We investigate the performance of the proposed method in mis-
matched reverberant conditions. We simulate the mismatched
scenario in which the system fails to classify T60. Two mod-
els optimized for T60 of 200 ms and 600 ms are tested against
the data of T60 of 200 ms, 400 ms and 600 ms. Fig. 5 demon-
strates that the proposed method outperforms the existing meth-
ods even in mismatched reverberant conditions. As expected,
our previous method of wavelet filtering [4] lags behind the
proposed one as the fixed bands cannot cope with the change
in reverberant condition.

7. Conclusion
We have proposed a multiple-frequency resolution analysis
through the wavelet packets in discriminating the subspaces of
clean speech and late reflection. Acoustic likelihood is incor-
porated with entropy criterion in wavelet basis selection, result-
ing to a link between the enhancement process and the acoustic
model for ASR.

The resultant WPT represents an appropriate frequency res-
olution of a signal of interest. Therefore, the system can effec-
tively estimate the power of speech and late reflection in rever-
berant signals. This results to an effective Wiener gain estimate
for dereverberation. In the experimental evaluations, the pro-
posed dereverberation method improves ASR performance.
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