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Abstract

We present an improved denoising method based on filtering of
the noisy wavelet coefficients using a Wiener gain for automatic
speech recognition (ASR). We optimize the wavelet parameters
for speech and different noise profiles to achieve a better esti-
mate of the Wiener gain for effective filtering. Moreover, we in-
troduce a scaling parameter in the Wiener gain to minimize mis-
match caused by distortion during the denoising process. Ex-
perimental results in large vocabulary continuous speech recog-
nition (LVCSR) show that the proposed method is effective and
robust to different noise conditions.

Index Terms: Speech recognition, Robustness, Denoising and
Wavelet

1. Introduction

Background noise is often present in environments where auto-
matic speech recognition (ASR) systems are deployed. A noisy
signal results to degradation in recognition performance due to
mismatch with the acoustic model (AM). Thus, speech process-
ing techniques for noise suppression is one of the most impor-
tant topics in ASR.

There are a number of denoising techniques, and most of
them are based on the short term Fourier transform (STFT). In
this paper, we focus on the wavelet transform because of its
flexibility of using the analysis window of a variable length for
different frequency bands. Moreover, we can manipulate its pa-
rameters to effectively discriminate the signal subspaces occu-
pied between noise and speech [1]. Seminal works in wavelet
denoising are based on waveshrink [2] and thresholding [3]. A
more advanced method was proposed in [4]. This method intro-
duces voice activity detection (VAD) and uses several threshold
profiles for different types of noise. With the VAD, more ac-
curate estimation of noise power is achieved. The use of noise
profiles enables flexibility in switching to several thresholds to
discriminate noise from speech.

Most of the existing wavelet methods [2][4] are generally
designed to enhance the speech waveform, but this does not nec-
essarily mean an improvement in ASR performance. Therefore,
we propose an improved wavelet-based denoising method opti-
mized for ASR. We optimize the wavelet parameters for speech
and noise based on AM likelihood for improving the Wiener
gain estimate. Wavelet filtering is performed by weighting the
noisy wavelet coefficients with Wiener gains in multiple bands.
This method was successfully applied to dereverberation in the
previous work [5]. In this paper, we address its application
to the denoising problem. Specifically in this application, two
problems are addressed. First, there are a variety of noise types
in real environments. Thus, we establish the notion of noise
profiles to optimize specific wavelet parameters for each type
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Figure 1: Block diagram of the proposed method.

of noise.

Second, even if a denoising method effectively suppresses
noise, it often introduces distortion (i.e. residual noise) in the
processed signal. The effects of distortion may be acceptable to
human perception, but it may have a detrimental effect to ASR
since it is another form of mismatch with the AM. One way of
dealing with mismatch is to re-train the AM using the denoised
data. However, there are many types of noise in real environ-
ments and it is impractical to re-train the AM for every noise
condition. To deal with the residual noise, we introduce gain
tuning in the Wiener gain. The parameter is optimized to min-
imize the mismatch between the denoised data (residual noise)
and the noise data used in the AM training, and thus they will
compensate the acoustic distortion caused by the wavelet filter-
ing. During testing, an appropriate noise profile is identified
and the corresponding optimized wavelet and tuning parame-
ters for that profile are used to enhance the noisy speech input
through the wavelet filtering prior to ASR. The whole process
is depicted in Fig. 1.

The paper is organized as follows; Section 2 presents the
proposed denoising method based on wavelet filtering by op-
timizing the wavelet parameters. In Section 3, we show the
method of minimizing acoustic mismatch by tuning the Wiener
gains. Then, noise profile identification is explained in Section
4. Experimental setup and ASR evaluation results are presented
in Section 5. Finally, we conclude the paper in Section 6.

2. Wavelet Filtering for Denoising in ASR

2.1. Wavelet Parameter Optimization
A wavelet is generally expressed as
1
—Vv

= (57)

where ¢ denotes time, v and 7 are the scaling and shifting pa-
rameters respectively. W (’S*TT) is often referred to as the mother

(v, 7,t) =

M
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Figure 2: Wavelet parameter optimization scheme.

wavelet. Assuming that we deal with real-valued signal, the
wavelet transform (WT) is defined as

F(o.r) = [ w0, @
where F'(v, ) is the wavelet coefficient and f(¢) is the time-
domain function. With an appropriate training algorithm, we
can optimize 7 and v so that the wavelet captures specific char-
acteristics of a certain signal of interest. The resulting wavelet
is sensitive in detecting the presence of this signal given any
arbitrary signal. In the wavelet filtering method, we are inter-
ested in detecting the power of clean speech and noise given
a noisy observation. We optimize the wavelet parameters to
detect clean speech and noise separately based on the AM like-
lihood as shown in Fig. 2. Since we are interested in speech
subspace in general, optimizing a single wavelet to capture the
general speech characteristics is sufficient. In the upper part of
Fig. 2, we illustrate the optimization of the wavelet for clean
speech. Wavelet coefficients S(v,7), extracted through Eq.
(2), are converted back to the time domain s, - through inverse
wavelet transform (IWT). Likelihood scores are computed us-
ing the clean speech acoustic model \s, a Gaussian Mixture
Model (GMM) of 64 components. This is a text independent
model which only captures the statistical information of the
speech subspace. The process is iterated by adjusting v and
7. The corresponding v=a and 7=c that result to the highest
score are selected.

The same procedure is applied to the case of noise, except
for the creation of multiple profiles (%), representing different
types of noise. Likelihood scores are computed using the cor-
responding noise model A ) (same model structure as that of
As). This model is trained using a noise database. The corre-
sponding v=b and 7=3" that maximize the likelihood score
are stored in the profile.

The noise database is originally composed of seven base
noise, i.e. Car, Computer, Office, Crowd, Park, Mall and Vac-
uum cleaner. To generalize to a variety of noise characteristics,
additional entries are made by combining different types of base
noise. To remove redundancy and suppress the increase, we
measure the correlation of the resulting combinations and se-
lect the ones that are less correlated with existing noises. Thus,
the expanded noise database referred to as noise profiles will
provide more degree of freedom in characterizing various noise
distributions.

2.2. Wavelet Filtering

The general expression of the Wiener gain at window frame w
and band m is expressed as

S, 7)om
S0, )3 + N(v, )5,
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Figure 3: Tuning parameters of Wiener gain.

where S(v, 7)2,, and N (v, 7)>  are wavelet power estimates
for the clean speech and noise, respectively. And v and 7 are
the wavelet parameters, scale and shift. By using the optimized
values for v and 7 as discussed in Section 2.1, we can compute
the speech and noise power estimates directly from the observed
noisy signal X (v, T)wm. Thus, the speech power estimate be-
comes

S(U,’T)im ~ X(a, a)im, 4)
and the noise power estimate N (v, 7)?  as
N, 7)o ~ X0, 59, )

Wavelet filtering is conducted by weighting the noisy wavelet
coefficient X (v, T)wm with the Wiener gain as,

X (v, T)wm(enhanced) = X (v, T)wm 6)
In Eq. (6), the Wiener weight x.,» dictates the degree of sup-
pression of the contaminant noise to the observed signal at par-
ticular frame w and band m. If the noise power estimate is
greater than the estimate of the speech power, then Kum for
that band may be set to zero or a small value. This attenuates
the effect of noise. On the other hand, if the power of the clean
speech estimate is greater, the Wiener gain will emphasize its
effect. The enhanced wavelet coefficients are converted back to
the time domain through IWT and given to the ASR process.

. Rum-

3. Tuning Parameters of Wiener Gain

Denoising techniques often introduce distortion (i.e. residual
noise), causing mismatch with the AM. To address this prob-
lem, super-imposition of a known noise was proposed [6][7].
Prior to training, a Gaussian noise is super-imposed to the clean
speech database to train an AM [7]. Then, the same noise is
super-imposed to the denoised speech during testing. How-
ever, it is not straightforward to determine the noise level super-
imposed on the test data. Moreover, the method still depends
on the noise types and denoising used. Thus, we introduce an
additional scaling parameter ¢ in Eq. (3)

S(v,7)2m
SV, T)2m + SW N (v, 7)2,
to minimize the mismatch between the super-imposed noise (AM
condition) and the residual noise. Tuning of 5% is done offline
and its concept is illustrated in Fig. 3.

We denote the spectrum of the known super-imposed noise
as o(w, f) and the residual noise 0 (8,,,w, f) for a given
noise profile (i). Here, w and f are the frame index and fre-
quency, respectively. 0% (8,,,w, f) is derived by generating
noisy data, i.e. adding noise to the speech database, and then
denoising these noisy data with the wavelet filtering. Here only
the frames where residual noise is dominant are used. The ar-

(M

Rwm =



gument 55 in 9 (5,&?, w, f) indicates that the residual noise

spectrum is affected by the choice of 55 through the wavelet
filtering. The objective is to minimize the error E,,, between the

super-imposed noise ¢(w, f) and the residual noise 6 (55,?, w, f)

by adjusting 5% Fora given noise profile (2), the scaling pa-
rameter 65 is optimized through minimum mean squared error
(MMSE) criterion in each band m

B = LSS e ) - 006w D ®)

w fEBm,

where B,, is among the given set of bands. We used a total
number of bands M = 5 similar to that in [5]. By this tuning
of the Wiener gain, super-imposition of the known noise to the
denoised utterance during testing is not needed anymore.

4. Noise Profile Identification

Each noise profile has corresponding optimized wavelet param-
eters (b, 8 in Section 2.1) and tuning parameters of the
Wiener gain (65,? in Section 3). During testing in ASR, it is
necessary to be able to classify the noise profile that corrupts
the speech signal to retrieve the appropriate parameters and per-
form the proposed wavelet filtering. To identify the noise profile
(7), a GMM-based classifier is employed. The GMMs (A,,:))
are same as used in optimizing the wavelet parameters for the
noise profiles discussed in Section 2.1. During testing, high-
energy frames are removed from the input noisy speech and
the remaining noise segments are evaluated with the GMMs.
Subsequently, the profile (7) that leads to the best likelihood is
selected. We have found out that the identification works well
even with only a few frames of data.

5. Experimental Evaluations

We have evaluated the proposed method in large vocabulary
continuous speech recognition (LVCSR). The training database
is the Japanese Newspaper Article Sentence (JNAS) corpus with
a total of approximately 60 hours of speech. The test set is com-
posed of 200 sentences uttered by 50 speakers. The vocabulary
size is 20K and the language model is a standard word trigram
model.

Speech is processed using 25 ms-frame with a 10 ms. shift.
The features used are 12-order MFCCs, 12-order AMFCCs,
and APower. The AM is a phonetically tied mixture (PTM)
HMMs with 8256 Gaussians in total. It is trained using the
speech database with the super-imposition of Gaussian noise,
that is different from those in the noise profiles. We note that in
our proposed method, we use only a single AM in ASR for dif-
ferent noise and SNR conditions. We used seven types of real
noise (base noise) in the NAIST database [7]: Car, Computer,
Office, Crowd, Park, Mall and Vacuum cleaner. As the result of
combination of the base noises, 20 noise profiles are derived.

In Tables 1, 2 and 3 we show the ASR performance in word
accuracy for different methods in 20dB, 10dB and 0dB SNR.
The accuracy in the clean condition is 93%. (A) is the result
when the noisy test data is not processed, and recognized us-
ing an AM re-trained with the same noisy condition. (B) is
the result of ETSI advanced front-end [8], a standard denoising
for ASR. We also compare the performance with a denoising
method based on Kalman filtering [9] in (C). In (D), we show
the result of one of the best performing wavelet-based denois-
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ing methods which employ VAD and noise profiles [4]. In (E),
we show the performance of the conventional Wavelet filtering
[1]. The proposed wavelet filtering method with wavelet pa-
rameter optimization is shown in (F). The optimization (Section
2.1) significantly improved the ASR performance, compared to
the conventional wavelet filtering (E). The ASR performance is
further improved by introducing the tuning parameter (Section
3) as shown in (G). The proposed method significantly outper-
forms both the conventional wavelet methods (D and E) and
standard non-wavelet denoising methods (B and C).

Next, we investigated the robustness of the proposed method
in the event that a particular noise during testing is not cov-
ered in the noise profile database. To simulate this scenario, we
held out some noise type and compare its performance when
the noise is included in the noise profile database (i.e. (G)).
The decrease in word accuracy (averaged over 20dB, 10dB and
0dB) shown in Fig. 4 between the two is very small, which
means that the system is robust. The performance for the held-
out noise condition is still better than that of the best performing
denoising method by ETSI advanced front-end. The robustness
of the system may be attributed to the expansion of the noise
database (i.e. noise profiles) by combining different types of
base noise. Note that the held-out noise type was not used to
expand the noise profile database in this experiment.

6. Conclusion

We have presented an improved wavelet filtering, by optimiz-
ing the wavelet parameters to effectively estimate the power
of the clean speech and the noise. This optimization is based
on the AM likelihood, and results to a more accurate Wiener
gain estimate for denoising. We have also proposed a method
to compensate distortion caused by the wavelet filtering, by in-
troducing a scale parameter in the Wiener gain. Since the tuning
parameter is optimized to minimize the acoustic mismatch be-
tween the denoised data and the AM, ASR performance is also
enhanced. In the future, we will further investigate the gener-
alization of noise to be included in the noise profiles for more
robustness to different noisy conditions.
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Table 1: Evaluation results in word accuracy (20 dB SNR)

Car Computer | Office | Crowd | Park Mall Vacuum || average
(A) No processing 72.0% | 69.3% 63.3% | 64.8% | 51.2% | 43.0% | 64.5% 61.2%
(B) ETSI [8] 87.3% | 86.4% 78.4% | 79.9% | 62.5% | 57.3% | 81.2% 76.1%
(C) Kalman Filtering [9] 86.1% | 85.2% 773% | 78.5% | 61.7% | 56.9% | 80.1% 75.1%
(D) Wavelet Denoising [4] 84.5% | 83.6% 76.1% | 76.4% | 58.9% | 55.2% | 78.7% 73.4%
(E) Wavelet Filtering (WF) [1] 85.8% | 84.3% 76.8% | 77.8% | 60.3% | 55.7% | 79.4% 74.3%
(F) Proposed WF 89.7% | 88.3% 82.6% | 83.5% | 64.8% | 59.0% | 83.3% 78.7%
(G) Proposed WF + gain tuning || 91.3% | 89.2% 84.0% | 84.7% | 65.9% | 62.6% | 84.9% 80.3%

Table 2: Evaluation results in word accuracy (10 dB SNR)

Car Computer | Office | Crowd | Park Mall Vacuum || average
(A) No processing 59.2% | 56.9% 47.6% | 49.0% | 38.5% | 35.9% | 53.7% 48.7%
(B) ETSI[8] 78.0% | 75.8% 64.2% | 65.6% | 52.1% | 50.5% | 71.4% 65.4%
(C) Kalman Filtering [9] 771% | 74.3% 63.4% | 63.9% | 50.8% | 48.0% | 70.2% 64.0%
(D) Wavelet Denoising [4] 72.7% | 70.9% 61.2% | 61.5% | 47.6% | 44.8% | 68.3% 61.0%
(E) Wavelet Filtering (WF) [1] 73.4% | 72.0% 62.1% | 62.6% | 48.4% | 46.3% | 69.0% 62.0%
(F) Proposed WF 82.8% | 80.1% 68.7% | 69.8% | 56.4% | 55.2% | 75.4% 69.8%
(G) Proposed WF + gain tuning || 84.6% | 82.5% 71.4% | 741% | 58.9% | 56.7% | 77.0% 72.2%

Table 3: Evaluation results in word accuracy (0 dB SNR)

Car Computer | Office | Crowd | Park Mall Vacuum || average
(A) No processing 23.9% | 20.1% 13.5% | 153% | 7.5% 5.3% 17.3% 14.7%
(B) ETSI[8] 48.3% | 45.2% 31.6% | 34.8% | 24.7% | 21.5% | 29.1% 33.6%
(C) Kalman Filtering [9] 47.0% | 43.7% 30.2% | 33.4% | 23.9% | 20.7% | 28.0% 32.4%
(D) Wavelet Denoising [4] 45.1% | 41.4% 28.6% | 31.8% | 19.5% | 18.9% | 25.7% 30.1%
(E) Wavelet Filtering (WF) [1] 46.3% | 42.1% 29.5% | 32.6% | 20.2% | 19.1% | 26.9% 31.0%
(F) Proposed WF 56.4% | 54.3% 412% | 42.5% | 32.8% | 28.7% | 40.2% 42.3%
(G) Proposed WF + gain tuning || 60.6% | 58.7% 43.6% | 45.8% | 35.9% | 33.0% | 44.6% 46.0%
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Figure 4: Robustness to noise that are not enrolled in the profile database (Averaged results of 20dB, 10dB and 0dB SNR).
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