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Abstract
This paper presents an improved wavelet-based dereverberation
method for automatic speech recognition (ASR). Dereverbera-
tion is based on filtering reverberant wavelet coefficients with
the Wiener gains to suppress the effect of the late reflections.
Optimization of the wavelet parameters using acoustic model
enables the system to estimate the clean speech and late reflec-
tions effectively. This results to a better estimate of the Wiener
gains for dereverberation in the ASR application. Additional
tuning of the parameters of the Wiener gain in relation with
the acoustic model further improves the dereverberation pro-
cess for ASR. In the experiment with real reverberant data, we
have achieved a significant improvement in ASR accuracy.
Index Terms: Robustness, Speech recognition, Dereverbera-
tion

1. Introduction
Acoustic degradation of the speech signal caused by reverbera-
tion poses a problem in distant-talking speech re-
cognition applications. The observed signal in the microphone
is smeared with both the effects of early and late reflections.
We have proposed a dereverberation approach [1][2] that sup-
presses the late reflection of the reverberant signal by means of
multi-band spectral subtraction. This method is analogous to
the multi-band spectral subtraction steered by multi-step linear
prediction [3]. In [1][2], the power estimate of the late reflection
is crucial in the dereverberation process. However, there is no
straightforward means of accurately estimating it, as its charac-
teristics vary accordingly as a function of the room characteris-
tics and the energy of the preceding speech-frame segments.

In this paper, we propose a wavelet-based dereverberation
approach optimized for ASR as shown in Fig. 1. First, we
estimate the room reverberation time T60 to obtain the room
impulse response (RIR). Then, we reproduce the reverberant
data set and optimize separate wavelet parameters (i.e. scale
and shift) for speech and late reflection, respectively. The opti-
mization process is based on improving the model likelihood
of the speech recognizer through offline training. In the ac-
tual dereverberation process, wavelet filtering is employed by
weighting the reverberant wavelet coefficients with multi-band
Wiener gains. In calculating the Wiener gains, we estimate the
clean speech and the late reflection power using the optimized
wavelet parameters. Then, we tune the parameter of the Wiener
gain based on the acoustic model likelihood. During testing,
the optimized wavelet parameters and the tuned parameter of
the Wiener gain are used for dereverberation through wavelet
filtering.

The paper is organized as follows; Section 2 gives an overview
of the reverberant model and the concept of the dereverberation
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Figure 1: Block diagram of the proposed method.

approach we adopt. Section 3 presents the proposed method
of wavelet-based dereverberation. Experimental conditions and
results are given in Section 4, and we will conclude this paper
in Section 5.

2. Reverberant Speech Model
2.1. Early and Late Reflection

The spectrum of the reverberant signal is given as,

X(f) ≈ S(f)H(f) (1)

where X(f), S(f) and H(f) are the frequency components
of the reverberant signal, clean speech signal and the room im-
pulse response (RIR), respectively. The reverberation effect can
be decomposed into early and late reflections. The early reflec-
tion is due to the direct signal and some reflections that occur
at earlier time and can be treated as short-period noise. The
late reflection, whose effect spans over frames can be treated as
long-period noise. The RIR h can be expressed with early hE

and late hL components as follows,

hE(t) =

{
h(t) t < T
0 otherwise (2)

hL(t) =

{
h(t+ T ) t ≥ T

0 otherwise (3)

where T denotes the frame length. Eq. (2) and (3) characterize
both the short and long-period effects of the reverberant signal.
The short-time fourier transform (STFT) of the reverberant sig-
nal given in Eq. (1) can be expressed in terms of early and late
reflections as

X(f, t) = S(f, t)H(f, 0) +
∑D

d=1 S(f, t− d)H(f, d)
= XE(f, t) + XL(f, t)

(4)
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Figure 2: Room impulse response approximation.

where H(f, 0) is the RIR in-frame effect to the speech sig-
nal S(f, t) due to hE(t). We denote this as early reflection
XE(f, t). The second term XL(f, t) referred to as the late
reflection can be viewed as smearing of the clean speech by
H(f, d) which corresponds to the d frame-shift effect of the
RIR due to hL(t). D is the number of frames over which the
reverberation (smearing) has an effect and is related with the re-
verberation time T60. The early reflection is mostly addressed
through Cepstral Mean Normalization (CMN) in the ASR sys-
tem as it falls within the frame. Thus, we focus on suppressing
only the effect of the late reflection.

2.2. T60 Estimation

Although RIR can be accurately identified through physical mea-
surement [4], it may be impractical and inconvenient whenever
the room characteristics change. The HMM representation of a
speech signal is of low resolution compared to the actual RIR.
Thus, in HMM-based ASR applications, it may be sufficient to
use T60 estimate in describing the RIR characteristics of a room
[5]. The multiple reflections of sound can be described by a
decaying acoustical energy given as

h
2(l) ≈ e

( ln (10)/T60) l
, (5)

where l is the discrete time sample, and T60 is the reverberation
time. Fig. 2 illustrates the process of T60 estimation. First,
we generate reverberant data xT601 ... xT60K based on Eq. (5)
and train GMM with 64 mixtures for each: μrev1

... μrevK
.

In the actual T60 estimation, the likelihood scores are evaluated
against μrev , and the subsequent T60 that results in the highest
likelihood score is selected. By using the T60 estimate, we can
synthetically generate the RIR using Eq. (5). With the RIR, hL

is identified experimentally in our previous work [1][6].

3. Wavelet Filtering for Dereverberation
3.1. Wavelet Parameter Optimization

The advantage of wavelet over the STFT is its flexibility to ana-
lyze the spectral component and detect changes across the spec-
trum [7]. A wavelet is generally expressed as

Ψ(υ, τ, t) =
1√
υ
Ψ

(
t− τ

υ

)
, (6)

where t denotes time, υ and τ are the scaling and shifting pa-
rameters respectively. Ψ

(
t−τ
υ

)
is often referred to as the mother

wavelet. Assuming that we deal with real-valued signal, the
wavelet transform (WT) is defined as

F (υ, τ ) =

∫
f(t)Ψ(υ, τ, t)dt, (7)

where F (υ, τ ) is the wavelet coefficients and f(t) is the time-
domain function. Unlike the constant window analysis in STFT,
WT offers the flexibility of shifting and scaling the mother wavelet
shown in Eq. (6). Shifting the wavelet may delay or hasten its
offset. The scale parameter controls the degree of representa-
tion of the feature parameters of the signal of interest. Thus,
with an appropriate training algorithm we can optimize τ and υ
so that the wavelet captures specific characteristics of a certain
signal of interest. The resulting wavelet is sensitive in detecting
the presence of this signal given any arbitrary signal. In our pro-
posed dereverberation approach, we are interested in detecting
the power of clean speech and late reflection given a reverberant
signal.

We optimize the wavelet to detect clean speech and late re-
flection separately based on the acoustic model likelihood as
shown in Fig. 3. In ASR, we assume that the speech does not
vary for a certain time-frame. Thus, optimizing a single wavelet
template for speech will be sufficient. In Fig. 3 (top) we illus-
trate the optimization of the wavelet for clean speech. Wavelet
coefficients S(υ, τ ), extracted through Eq. (7), are converted
back to time domain sυ,τ . Likelihood scores are computed us-
ing the clean speech acoustic model λs. The process is iterated,
adjusting υ and τ . The corresponding υ=a and τ=α that result
to the highest score are selected. In the case of the late reflec-
tion in Fig. 3 (bottom), D templates are to be optimized for
both scale (υ1, ...υD) and shift (τ1, ..., τD). These correspond
to D frames that cause smearing as depicted in Eq. (4). We
note that the effect of smearing is not constant, thus D tem-
plates are created. As discussed in Section 2.2, we can avail of
the late reflection coefficients hL from Eq. (5) after estimating
T60 [1][6]. Then, late reflection observations xL are generated
by convolving the clean speech with hL. Next, wavelet coeffi-
cients XL(υ, τ ) are extracted through WT (Eq. (7)). To make
sure that XL(υ, τ ) is void of speech characteristics, threshold-
ing is applied toXL(υ, τ ). Speech energy is characterized with
high coefficient values [8] [9] and thresholding sets these coef-
ficients to zero,

X̄L =

{
0 , | XL | > thresh

XL , | XL | < thresh
(8)

where thresh is calculated similar to that of [8] using

thresh = σ
√

2 log(L), (9)
where L is the length of the late reflection with variance σ2 over
the span ofD. The thresholded signal is converted back to time
domain x̄υ,τ

L
and evaluated against a thresholded late reflec-

tion model λx̄L
. The parameters υ and τ are adjusted and the

corresponding υ={b1,...bD} and τ={β1,...βD} that result to the
highest likelihood score are selected. We note that the acous-
tic model λs is trained with clean speech data, while λx̄L

uses
the synthetically generated late reflection data with thresholding
applied.

3.2. Wavelet Filtering

We have expanded the multi-band wavelet domain filtering [10]
to address the dereverberation problem [11]. The general ex-
pression of the Wiener gain at bandm [11] is expressed as

κm =
S(υ, τ )2m

S(υ, τ )2m + δmXL(υ, τ )
2
m

, (10)
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Figure 3: Wavelet optimization scheme.

where S(υ, τ )2m and XL(υ, τ )
2
m are wavelet power estimates

for the clean speech and the late reflection, respectively. By
using the optimized values for υ and τ discussed in Section
3.1, we can estimate these parameters directly from observed
reverberant signal X(υ, τ ). Thus, the speech power estimate
becomes

S(υ, τ )2m ≈ X(a, α)2m, (11)

and the late reflection power XL(υ, τ )
2
m estimate is given for

frame-wise:

XL(bd, βd)
2
m ≈

⎧⎪⎪⎨
⎪⎪⎩

X(b1, β1)
2 , d = 1∑d−1

k=1X(bk, βk)
2

d− 1
+X(bd, βd)

2
m ,

otherwise
(12)

where d is the d-th frame template (for d:1,...,D). We note that
the contribution of the preceding frames is also considered in
Eq. (12). If the late reflection power estimate is greater than the
estimate of the speech power, then κm for that band may be set
to zero or a small value. Due to the non-stationary characteris-
tics of the late reflection, a tuning parameter δm is introduced
in Eq. (10) to compensate the estimation error of XL(υ, τ )

2
m.

Wavelet filtering is carried out by weighting the reverberant
wavelet coefficients with the Wiener gains as

X(υ, τ )m(enhanced) = X(υ, τ )m κm . (13)

The Wiener weighting κm dictates the degree of suppression of
the late reflection to the observed signal. We note that the opti-
mized υ and τ are only used in calculating the Wiener gains.
The enhanced wavelet coefficients are converted back to the
time domain through IWT. In our previous work [11], the wavelet
parameters are not optimized to track the clean speech and the
late reflection given a reverberant observation. The method [11]
relies solely in tuning of δm to compensate the estimation error,
which is reviewed in the next subsection.

3.3. Tuning Parameter of Wiener Gain

We also introduce a multi-band parameter δm (for band m:
1,...,M ) to tune the Wiener gain in Eq. (10). These values are
adjusted and selected in relation to the acoustic model likeli-
hood. Thus, a set {δ1, ..., δm, ..., δM}opt is optimized through
maximum likelihood criterion as described in [11]. This will
minimize the error estimate of the late reflection power and fur-
ther improve the Wiener gain for effective wavelet filtering.

4. Experimental Evaluation
The training database is from the Japanese Newspaper Article
Sentence (JNAS) corpus. The open test set is composed of 200
utterances. ASR experiments are carried out on the Japanese
dictation task with a 20K vocabulary. The language model is
a standard word trigram model. The acoustic model is a pho-
netically tied mixture (PTM) HMMs with 8256 Gaussians in
total. We experimented in the condition of reverberation time:
T60=200 msec and 600 msec. Reverberant training data are syn-
thetically produced with the automatically generated RIR dis-
cussed in Section 2.2. The test data were recorded in a room
with known reverberation time: T60=200 msec and 600 msec.
Thus, we used actual reverberant data for evaluation. In the
experiments we used a total number of bands M = 5 which
was found to be effective [1][2]. The wavelet used here is the
Daubechies wavelet which was also used in [11]. Dereverbera-
tion is done in the wavelet domain and converted back to time
domain. Then, MFCC parameters are computed for speech
recognition.

In Table 1, we show the ASR performance in word accuracy
for different methods. (A) and (B) are the results when the re-
verberant data are not processed and matched against clean and
reverberant acoustic models, respectively. We show the result
of an approach based on improved wavelet thresholding [9] in
(C). This method is an improvement of the simple thresholding
in [8]. By incorporating additional information such as VAD
and statistical profile of the contaminant data (i.e. reverbera-
tion), an improved thresholding is achieved. In (D), we show
an improvement of the performance from (C) when the wavelet
parameters are optimized as proposed in Section 3.1. Another
wavelet-based dereverberation method based on extrema clus-
tering [12] is shown in (E). This method adopts the speech pro-
duction model to detect the reverberant coefficients. It applies
wavelet extrema clustering to the linear prediction coefficients
to separate the clean and reverberant components. When the
wavelet parameters are optimized, the recognition performance
is further improved in (F). The result of our previous derever-
beration approach [11] is shown in (G) and the result of incorpo-
rating wavelet optimization is given in (H). The results in Table
1 show the effect of optimizing the wavelet parameters in the
recognition performance. The consistent improvement is ob-
served across the different wavelet-based methods.

In Fig. 4, we show the power plot of the late reflection,
estimated for both optimized and un-optimized wavelet param-
eters. We also show the exact power by reproducing the exact
late reflection using the measured RIR. In this plot, the power
envelope when using the optimized wavelet parameters closely
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Table 1: ASR results in Word Accuracy
Methods 200 msec200 msec200 msec 600 msec600 msec600 msec

(A) No processing; clean model 68.6 % 21.4 %
(B) No processing; reverb model 75.4 % 32.1 %
(C) Improved thresholding [9] 77.3 % 50.6 %

(D) Improved thresholding [9] + wavelet optimization 79.1 % 54.0 %
(E) Extrema clustering [12] 78.4 % 59.7 %

(F) Extrema clustering [12]+ wavelet optimization 80.8 % 62.9 %
(G) Wavelet Filtering 81.5 % 64.5 %

(H) Wavelet Filtering + wavelet optimization 83.2 % 68.6 %
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Figure 4: Normalized late reflection power plot.

resembles that of the exact late reflection power (using mea-
sured RIR). This suggests, that the optimized wavelet is able
to track the existence of late reflection power in a reverberant
signal. We note that the reverberant signal contains speech en-
ergy as well. The estimation when using un-optimized wavelet
is not good as it cannot discriminate properly between the clean
speech and the late reflection in the reverberant signal.

5. Conclusion
We have proposed an improved dereverberation approach based
on wavelet filtering. By optimizing the wavelet parameters, the
system can effectively estimate the power of the clean speech
and the late reflection in a reverberant signal. This results to an
effectiveWiener gain for dereverberation. Most of the processes
in the dereverberation scheme are closely linked to the acoustic
model likelihood. Thus, the proposed dereverberation method
is effective in achieving robustness in the ASR application.
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