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ABSTRACT

Speech enhancement is a common approach to address the ef-
fects of degradation due to noise and channel contamination.
This approach is intended to suppress unwanted signal and
recover the clean speech. In this paper, we focus on two sim-
ple and low-computational methods: Wiener filtering (WF)
and spectral subtraction (SS). Conventionally, these are for-
mulated with no relation with automatic speech recognition
(ASR). We propose to optimize the conventional speech en-
hancement technique in relation with likelihood of the acous-
tic model. We also exploit these simple speech enhancement
techniques that are originally designed for denoising, to ad-
dress reverberation as well. In the experiment with real noisy
and reverberant environments, we have achieved significant
improvement in recognition performance using the proposed
approach.

Index Terms— Robustness in ASR, Dereverberation,De-
noising, Spectral Subtraction, Wiener Filtering

1. INTRODUCTION

Acoustic degradation of the speech signal caused by chan-
nel and noise is a common problem in speech recognition
applications. There have been a lot of research involving
speech enhancement that are specifically designed to recover
the clean speech. One of the widely used approaches is
Wiener filtering (WF) [1] where short term estimates of the
noise and speech are used in defining an adaptive filter to
reduce as much noise energy while removing little speech
energy as possible. A number of variants have been proposed
and implementations in different domains such as time, fre-
quency and wavelet [1] [2] are investigated. Another popular
enhancement technique is the spectral subtraction (SS) [3]
which subtracts the magnitude spectrum of noise from that
of the noisy speech. The noise is assumed to be uncorrelated
and additive to the speech signal. A modification is given
in [4] where multi-band is considered to deal with differ-
ent effects of noise in different frequencies. Although these
simple methods are widely used, they are formulated totally
independent of the backend ASR systems.

Another approach which is linked with ASR or acoustic
model likelihood is the feature transformation and adaptation
[5] [6] [7]. Although these methods work well, they require
a sufficient amount of adaptation data, and need some train-
ing to derive mapping parameters. These methods cannot be
easily deployed in arbitrary environments especially when in-
formation of the room acoustics is not available.

In this paper, we focus on the simple enhancement algo-
rithms: Wiener filtering (WF) and spectral subtraction (SS).
We first extend the WF and SS to work in reverberant environ-
ments and then optimize the ehancement process in relation
with ASR.

The paper is organized as follows; in Section 2, we show
the method of extending both WF and SS to address rever-
berant conditions. In Section 3, we discuss the optimization
of the scaling parameters used in WF and SS in the context
of ASR followed by the RIR estimation in Section 4. Exper-
imental conditions and results are given in Section 5, and we
will conclude this paper in Section 6.

2. METHODS

The classical noisy speech model is given as,

y(n) = s(n) + d(n) (1)

where s(n) and d(n) are the uncorrelated speech and noise
signal respectively. To make use of the classical speech en-
hancements to work in reverberant scenario, we treat the re-
verberant signal analogous to that of Eq. (1). Thus, the rever-
berant model is given as,

x(n) = xE(n) + xL(n) (2)

where xE(n) and xL(n) are the uncorrelated early and late
reflections. The early reflections are composed of the direct
signal and reflections in earlier time while the latter renders
itself as coloration due to multiple reflections. In this paper,
we consider both speech s(n) and noise d(n) are reverber-
ant in nature. Assuming we can access the room impulse
response (RIR) h(n) = [hE(n)hL(n)] and effectively iden-
tify its early and late componentshE(n), hL(n) [8][9] respec-
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Fig. 1. Speech enhancement using Wiener filtering (WF)

tively, we can further rewrite Eq. (2) as,

x(n) = (s(n)+d(n))∗hE(n)+ (s(n)+d(n))∗hL(n) (3)

The power spectrum of the reverberant model in Eq. (2) can
be estimated as:

|X(f)|2 ≈ |XE(f)|2 + |XL(f)|2 (4)

where XE(f) is the magnitude spectra of the early reflection
of speech while XL(f) is the magnitude spectra of the late
reflection of speech and noise. When we assume the uncorre-
lated noise does not vary much across the time axis, its early
reflection components can be merged with the late reflection.
When referring to reverberant data x(n), we assume rever-
berant speech and reverberant noise as depicted in Eq. (3).
In dealing with reverberation (both reverberant speech and
noise), we are interested only in suppressing the effects of
the late reflection since the early reflection is sensitive to the
microphone-speaker location. Moreover, the effect of early
reflection is mostly mitigated with cepstral mean normaliza-
tion (CMN) [8][9].

2.1. Wiener Filtering

The wavelet-based Wiener filtering [2] which is used in sup-
pressing additive noise requires the calculation of Wiener
gains given as,

κm =
S(a)2m

S(a)2m + D(a)2m
, (5)

where S(a)2m and D(a)2m are the speech and noise power re-
spectively, calculated from the wavelet coefficients at scale a.
Noise segments were detected using a voice activity detector
(VAD). For the jth contaminated wavelet coefficient in band
m wmj , the denoised wavelet coefficient is given as,

w̃mj(denoised) = wmj .κm, (6)

The Wiener weighting κm dictates the degree of suppression
of the contaminant to the observed signal. The enhanced
wavelet coefficients are used to reconstruct the speech signal
by inverse fast wavelet transform (IFWT).
This work of [2] is originally designed to suppress additive
noise only. We expand it to deal with reverberant channel by
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Fig. 2. Speech enhancement using spectral subtraction (SS)

suppressing the late reflections. Thus, the Wiener gain given
in Eq. (5) is modified to,

κm =
XE(a)2m

XE(a)2m + δmXL(a)
2
m

, (7)

where XE(a)2m and XL(a)2m are the early and late reflection
power respectively, calculated from the wavelet coefficients
at scale a. Although XE(a) has relatively high power values
than XL(a), the VAD method to select the correct segments
may not be sufficient. Thus, a scaling parameter δm is in-
troduced to minimize the error in calculating XE(a)2m and
XL(a)

2
m. We note that we can synthetically generate data

using the clean speech and noise database together with the
RIR [8][9]. Thus, we can calculate δδδ = [δ1..., δm, ..., δM ]
that minimize the error between {XE(a)2m, XL(a)2m} with
the VAD and {XE(a)2m, XL(a)2m} for the synthetically gen-
erated data. This process is similar to that in [8][9]. By apply-
ing the Wiener gains to the reverberant wavelet coefficients
wmj (analogous to Eq. 6), the enhanced wavelet coefficients
are given as,

w̃mj(enhanced) = wmj .km. (8)

The enhanced wavelet coefficients are converted back to the
time domain through IFWT and we denote this as xE(δδδ) to
signify that only the early reflections are retained using δδδ.
Fig. 1 illustrates the implementation of the modified WF.
First, the Wiener gains are calculated and the contaminated
data is scaled by the Wiener gains. The early reflections (en-
hanced data) are then recovered through IFWT. Optimization
of the scaling parameters based on ASR follows, which will
be discussed in Section 3.

2.2. Spectral Subtraction
We will show the expansion of the conventional SS to ad-
dress reverberation problems. As previously mentioned, we
are interested in recovering only the early reflection and sup-
pressing the late reflection. This can be done with multi-band
SS [8][9]. Thus, the mth band power spectra of XE(f) is
achieved through,

|XE(f, τ)|2 =

⎧⎪⎪⎨
⎪⎪⎩

|X(f, τ)|2 − δm|XL(f, τ)|2

if |X(f, τ)|2 − δm|XL(f, τ)|2 > 0

β|XL(f, τ)|2 otherwise
(9)

where β the flooring coefficient, |X(f, τ)|2 and |XL(f, τ)|2

are the power spectra of the reverberant signal and power of

4567



n
)|))(((maxarg

1
λnδExP

))((
1
nδxE opt1

δ

n
)|))(((maxarg

2
λnδExP

))((
2
nδxE opt2δ

n
)|))(((maxarg λnδ

MExP
))(( nδx

ME optM
δ

E-M 
)( 1optE δx

E-M 
)( 1optME −δx

1λ

1−M
λ

WF / SS 
Enhancement

n
)|))(((maxarg

1
λnδExP

))((
1
nδxE opt1

δ

n
)|))(((maxarg

2
λnδExP

))((
2
nδxE opt2δ

n
)|))(((maxarg λnδ

MExP
))(( nδx

ME optM
δ

E-M 
)( 1optE δx

E-M 
)( 1optME −δx

1λ

1−M
λ

WF / SS 
Enhancement

Fig. 3. ASR-based optimization of the scaling parameters.

the late reflection respectively, with a window period of τ .
δm denotes the mth band scaling parameter. The multi-band
scaling factors δδδ = [δ1..., δm, ..., δM ] are derived through
an offline training which minimizes the error of the estimate
|XL(f, τ)| under the MMSE criterion. The values of δδδ coef-
ficients (through offline training), and the effective identifica-
tion of the late components of the impulse response hL(n) are
discussed in [8] [9]. Fig. 2 shows the block diagram of the SS
implementation. First, the early reflection XE are recovered
as discussed in Eq. (9) and reverted back to xE(δδδ) by IFFT.

3. OPTIMIZATION BASED ON ACOUSTIC
LIKELIHOOD

In Section 2, the multi-band scaling parameters δδδ are all set
to initial MMSE-based values and in effect serve as a global
weighting. In this section, we discuss the optimization of δδδ,
fine-tuning both WF and SS to be directly linked with ASR.

In Fig. 3, we show the ASR-based optimization of δδδ

where the scaling parameters in each band is sequentially op-
timized from band m=1 to m=M. The band coefficient to be
optimized is allowed to change within a close neighborhood
n� from its initial MMSE value, where n = ±1...N and
� = 0.02. The reverberant data xxx is enhanced using either
multi-band WF/SS. Initially, we fix the rest of the scaling pa-
rameters to MMSE-based estimates except for the band to
be optimized. Thus, for optimizing band m = 1, we gen-
erate δδδ1(nnn) = [ δ1 MMSE + nnn �, δ2 MMSE , δm MMSE

, ..., δM MMSE ], and execute WF/SS using the generated co-
efficients. The resulting enhanced data xE(δδδ1(nnn)) are evalu-
ated using the HMM-based acoustic model which is trained
with data processed with MMSE-based WF/SS parameters,
denoted as λ = λMMSE . A likelihood score is computed
for each of the data processed with different WF/SS condi-
tions. Based on this result, δ(1)opt that has the correspond-
ing highest likelihood score is selected. Right after δ(1)opt

is found, the acoustic model is updated with data processed
by WF/SS using δ(1)opt. The newly updated model λ1 is
then used in calculating the likelihood score for the next band
and the process is repeated until the complete set of param-
eters δ1opt,...,δMopt are optimized. After the optimization,
the reverberant data are processed with the proposed ASR-
optimized WF/SS as shown in Fig. 4.

FWT / FFT WF / SS IFWT / IFFT
x )(δxE

][ δδ ...1 optMopt
=δ

FWT / FFT WF / SS IFWT / IFFT
x )(δxE

][ δδ ...1 optMopt
=δ

Fig. 4. Overall block diagram of the speech enhancement utilizing
ASR-optimized scaling parameters.

Fig. 5. Robust RIR Estimation.

4. ROBUST RIR ESTIMATION

Since we need the RIR, we implement an automatic estima-
tion of the RIR as opposed to physically measure it [8][9]. We
have shown that due to the low resolution characterization of
HMM to the speech signal compared to the RIR, rough esti-
mate of the RIR is sufficient in HMM applications. The RIR
can be modeled as having a decaying exponential energy,

h2(n) ≈ e(6 ln (10)/T60) l, (10)

where l is the discrete time sample, and T60 is the reverbera-
tion time. To effectively identify T60 in the presence of both
convolutive speech and noise, we designed a GMM-basedT60

classifier as shown in Fig. 5 (top). Reverberant speech and
noise are synthetically generated xT60

k with variable T60k
to

train GMMs μrevk
. To attain robustness, we employed the

following; first, reverberant noise-only frames (occur in block
segments during silence part of the clean speech) are used
to train the GMM. This avoids the variability caused by the
convolutive speech. From these reverberant noise-only block
segments, we select only the frames that have low power to
capture only the late reflection of the reverberant noise signal.
We note that the late reflection renders itself as coloration in
frequency due to multiple overlapping. This results in less
sensitivity to noise types and SNR since noise information
is smeared by the coloration effect. Finally, we use a larger
mixture for the GMM (i.e. 256 mix). The use of a large num-
ber of mixture components makes the GMM sensitive to the
higher resolution RIR. Fig. 5 (bottom) shows the actual iden-
tification of T60. The reverberant speech and noise input is
processed to classify noise-only frames. Then, likelihood is
calculated given all of the GMMs with different T60k

. The
corresponding T60 that results in the highest likelihood score
is selected and from this, the RIR is estimated using Eq. (10).
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Table 1. Recognition Results in Word Accuracy
office noise vacuum cleaner noise white gaussian noise

Methods 15dB 20dB 25dB 15dB 20dB 25dB 15dB 20dB 25dB
Testing: Unprocessed
Training: clean 23.4% 34.6% 40.3% 19.3% 32.2% 37.5% 25.6% 38.7% 42.0%
Testing: Unprocessed
Training: Unprocessed 37.1% 43.5% 48.6% 35.4% 38.7% 42.6% 39.4% 45.1% 50.3%
Testing: SS
Training: SS 51.8% 58.6% 63.2% 49.1% 57.3% 60.1% 52.8% 59.9% 64.7%
Testing: ASR-optimized SS
Training: ASR-optimized SS 61.4%61.4%61.4% 72.1%72.1%72.1% 75.9%75.9%75.9% 58.3%58.3%58.3% 70.1%70.1%70.1% 73.6%73.6%73.6% 63.4%63.4%63.4% 73.2%73.2%73.2% 77.1%77.1%77.1%
Testing: WF
Training: WF 52.3% 57.4% 61.8% 50.6% 56.4% 58.2% 53.6% 58.7% 62.9%
Testing: ASR-optimized WF
Training: ASR-optimized WF 62.5%62.5%62.5% 71.4%71.4%71.4% 74.1%74.1%74.1% 59.4%59.4%59.4% 68.368.368.3% 70.3%70.3%70.3% 64.7%64.7%64.7% 72.8%72.8%72.8% 76.5%76.5%76.5%

5. EXPERIMENTAL EVALUATION

5.1. Training and Testing Data

The training database is from the Japanese Newspaper Arti-
cle Sentence (JNAS) corpus. The open test set is composed
of 200 utterances. Recognition experiments are carried out
on the Japanese dictation task with 20K vocabulary. The lan-
guage model is a standard word trigram model. The acoustic
model is a phonetically tied mixture (PTM) HMMs with 8256
Gaussians in total.

We experimented using T60=200 msec reverberation time.
Reverberant training data are synthetically produced with the
automatically generated RIR discussed in Section 4. The test
data were recorded in a room with known reverberation time:
T60=200 msec. Thus, we used actual reverberant data for
evaluation. Three types of noise are considered; office, vac-
uum cleaner, and white Gaussian noise. The signal-to-noise
ratio (SNR) are 15 dB, 20 dB and 25 dB. The microphone-
to-speaker distance is approximately 1.5 m. The noise source
is also placed 1.5 m from the microphone with a 30 degrees
angle relative to the microphone-to-speaker distance. In the
experiments we use a total number of bands M = 5 which is
consistent that of the former work [8][9].

5.2. Recognition Performance

In Table 1, we show the recognition performance of the dif-
ferent methods. It is observed that enhancing the reverberant
data using WF and SS is better than not processing the rever-
berant data at all. However, when WF and SS are optimized
in relation with the ASR, further improvement in recognition
performance is achieved. This is attributed to the fact that the
ASR-optimized variants are capable of improving the model
likehood used by the ASR. The superior performance of the
proposed method is consistent to all of the different SNRs and
noise types in our experiment. We note that we test using real
recording noisy and reverberant data.

6. CONCLUSION

We have extended two popular denoising techniques (WF and
SS) to address reverberant speech and noise, and optimize
each of these to be effectively used in ASR applications. Im-
provement in performance is achieved as the enhancement
procedure is closely linked to the improvement of the acoustic
model likelihood. We have shown that the this concept works
in both frequency and wavelet domain.
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