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Abstract—We present an improved speech enhancement above, we include the effects of the additive backgroundenoi
method based on Wiener filtering in the wavelet domain for N(w, f) by expanding the reverberant model in Eq. (1)
automatic speech recognition (ASR). The wavelet coefficienthat
are contaminated by the effects of late reflection and backgmund
noise are filtered using a Wiener gain. We optimize the wavele Xw, = Xg(w, f) + Xp(w, f) + N, f). (2)
parameters for speech, background noise and late reflection
to achieve a better estimate of the Wiener gain for effecive = For ASR in noisy and reverberant conditions, enhancing
filtering. Wiener gains to compensate for the effects of late the contaminated signal is defined by suppressing the sffect
reflection and background noise are independently estimattand  of |ate reflection X, (w, f) and background nois&/(w, f).

then combined. Moreover, we introduce the noise profile and . . f .
reverberation time identification to cope with different noise and Since the late reflection is treated as noise, the enhan¢emen

reverberant conditions. Experimental results in large voabulary ~Problem is redus:e_d to a simple denoisin_g. problem._ Thus,
continuous speech recognition (LVCSR) show that the propesl we can apply existing wavelet-based denoising techniques t

method outperforms the conventional methods. address both the effects of late reflection and backgrouisgno
based on the model in Eq. (2). In this paper, we treat the
. INTRODUCTION contaminants separately since the late reflection is depgnd

on the smearing effect of the previous frames while the

In real-environment conditions, reverberation and additi background noise is not.
background noise often contaminate the quality of speechgeyeral wavelet-based speech enhancement methods have
signal used in automatic speech recognition (ASR) syst&msyeen proposed. A typical method [4] is constructed by irgegr
contaminated speech signal results to degradation in récogng a voice activity detection (VAD) and introducing difeent
tion performance due to mismatch with the acoustic modgireshold profiles for different conditions. The use of save
(AM). Thus, speech enhancement including denoising afi¢teshold profiles enables to cope with colored and non-
dereverberation is one of the most important topics in ASRtationary signals. A method which relies on the robustness
While speech enhancement has been conventionally studigdhe all-pole filter in modeling the clean speech from the
independently from ASR, we are studying on tight integrasontaminant subspace is also proposed [5]. By clusteritg on
tion of enhancement and ASR using a maximum likelihog@e wavelet extrema, the reconstructed signal is robusheo t
criterion [1]. effect of the contaminant subspace. Another method is based

The model of the reverberant speegH{w, f) (short-term on filtering of the contaminated wavelet coefficients using
spectrum, w: window frame, f: frequency) we adopt is wiener gains [6], which we extended for dereverberation in
based on the additive effects of the ealy:(w, f) and late [7]. The methods [4]-[6] are generally designed to enhahee t

Xr(w, f) reflection, speech waveform, but this does not guarantee an improvement
in performance for the ASR application. Moreover, these
X(w, = Xglw, f) + X (w, f) methods do not address the problem of both late reflection
~ S(w, fYH(O, f) + 25’21 S(w—d, f)H(d, f) and noise simultaneously.
(1) In this paper, we present a method of suppressing the

whereS(w, f) and H (w, f) are the frequency response of theeffects of late reflection and background noise through Vfien
clean speech and the room impulse response (RIR), resgétering in the wavelet domain. In the proposed scheme,
tively. D is the number of frames, over which the reverberatigorior to filtering, the wavelet parameters are optimized to
has an effect. The early reflection is due to the direct signatprove the likelihood of the acoustic model. The optimiaat
and some reflections that occur at earlier time. It is mosthenders the proposed method to be more effective in the ASR
addressed through Cepstral Mean Normalization (CMN) in thapplication. In this paper, background noise and late rédiec
ASR system as it falls within the frame. On the other handye jointly referred to as “contaminant signal”.

the late reflection, whose effect spans over frames, can bélhe paper is organized as follows; Section Il presents the
treated as long-period noise [2][3]. Following our assuopt proposed enhancement method based on Wiener filtering in
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Fig. 1. Wavelet parameter optimization scheme.

the wavelet domain using optimized wavelet parameters. ¢orrespondingy=a and 7=« that result to the highest score
Section Il we explain the noise profile and reverberatiometi are selected.

identification. The experimental setup and ASR evaluation

results are presented in Section IV. Finally, we conclude th

paper in Section V. 2) Noise: The same procedure is applied to the case of
noise, except for the creation of multiple profilés, repre-

Il. WIENER FILTERING IN WAVELET DOMAIN . . _ . s
senting different types of noiséV (v, 7)® and nq(j)r are the

A. Optimizing Wavelet Parameters wavelet and time domain of noise profilg), respectively.
A wavelet is generally expressed as Likelihood scores are computed using the correspondingenoi
1 PR model ), ;) (same model structure as that kf). This model
U(v,7,t) = %\If ( > ) , (3) is trained using a noise database. The correspondirig®

and 7=4(") that maximize the likelihood score are stored in
where ¢ denotes timep and 7 are the scaling and shifting the profile.

parameters respectivelylr (£=7) is often referred to as the ) o
mother wavelet. Assuming that we deal with real-valued 1he noise database is originally composed of seven base
signal, the wavelet transform (WT) is defined as noise, i.e. Car, Computer, Qﬁlce, Crovyd, Park,-MaII and
Vacuum cleaner. To generalize to a variety of noise charac-
teristics, additional entries are made by combining défer
types of the base noise. To remove redundancy and suppress
the increase of the entries, we measure the correlation of
the resulting combinations and select the ones that are less
gorrelated with existing noise entries. Thus, the expamaése

F(u,7) = /.f(t)\I/(U,T, t)dt, 4)

where F(v, 7) is the wavelet coefficient anfi(t) is the time-
domain function. With an appropriate training algorithme w

can optimizer and v so that the wavelet captures Specifidatabase referred to as noise profiles will provide moreekegr
characteristics of a certain signal of interest. The réasmlt . o pre Il provice m 9
of freedom in characterizing various noise distributions.

wavelet is sensitive in detecting the presence of this $igna
given any arbitrary signal. In the wavelet filtering methog

are interested in detecting the power of clean speech, noise . L
and late reflection given an observed contaminant. Thus, we3) Late reflection:in the case of the late reflection in
optimize the wavelet parameters to detect these separafd§- 1 (bottom), D templates for every reverberation time

based on the AM likelihood as shown in Fig. 1. Teo (j) are to be optimized for both scalen(...up)"”
and shift ¢,...,7p)). These correspond t@ preceding

frames that cause smearing to the current frame of interest.
: S . note that the effect of smearing is not constant, thus
in general, optimizing a single wavelet to capture the ganer LS .
S 2 _ ) . D templates are created. By estimating the reverberation
speech characteristics is sufficient. In Fig. 1, we illustra.. . : :
tl{“ne Tso (j), we can generate the impulse response and its

the optimization of the wavelet for clean speech. Wavele . . - %7)
coefficientsS(v, 7), extracted through Eq. (4), are converte orrespondmg Iate_ refl?jc;tmn coefficie [71- Thenf late
reflection observations;’ are generated by convolving the

back to the time domain, , through inverse wavelet trans- ) g )
form (IWT). Likelihood scores are computed using the clea#{€an speech witth ;. Next, wavelet coefficients( (v, 7)
speech acoustic modal, a Gaussian Mixture Model (GMM) are extracted through WT. In order to makg(v, 7' void
of 64 components. This is a text independent model whidf speech characteristics, thresholding is applieﬂ'(@,r)(LJ).
captures the statistical information of the speech sulssp&ac Speech energy is characterized with high coefficient vdi8les
greedy search process is iterated by adjustingnd 7. The [4] and thresholding sets these coefficients to zero,

1) Speech:Since we are interested in the speech subsp



Wiener weightx,,,,, dictates the degree of suppression of the

B ‘ 0 | X (v T)(j) > thr contaminant to the observed signal at particular framand
X(U,T)(LJ) = { G ’ %j) (5) bandm. If the contaminant power estimate is greater than the
X, ) [ X (o) [ < thr estimate of the speech power, thep,, for that band may

thr is calculated similar to that in [8]. The thresholdede€ set to zero or a small value. This attenuates the effect of

signal is converted back to time domaify), and evaluated contamination. On the other hand, if the power of the clean

against a late reflection model ;). The parameters and SPpeech estimate is greater, the Wiener gain will emphatsze i
L effect. The enhanced wavelet coefficients are convertekltoac

i i ()
7 are adjusted and the corresponding{es,...cp}*’ and éhe time domain through IWT and given to the ASR process.

={&,...£p}9) that result to the highest likelihood score ar
selected. We note that_; is trained using the synthetically [11. NOISE PROFILE AND Tg | DENTIFICATION
generated late reflection data (during training) with thodd-

Each noise profile(:) and reverberation timel; j
ing applied. b (@) s ()

has corresponding optimized wavelet parametéfg,(3()),
B. Wiener Filtering {e1,...ep}) and{¢y,...£p}9) as shown in Section II-A. For
rﬁagtual ASR, it is necessary to identify the profile that cptsu
éhe speech signal to retrieve the appropriate parameters. T
identify the noise profil€i), a GMM-based classifier is em-
ployed. The GMMs },,:) are same as used in optimizing the
wavelet parameters for the noise profiles discussed in &ecti
[I-A. Prior to ASR, high-energy frames are removed from
the input noisy speech and the remaining noise segments are
evaluated with the GMMs. Subsequently, the profilg that
p S(v,7)2 leads to the best likelihood is selected. The same procedure
ok = 5 e (7) is applied to the identification ofs, (j), using the GMM

S0, T)om + X2V, T) classifier \/) trained with the synthetically generated late
where S(v,7)2, ., N(Uﬁ)?ﬂm and XL(U,T)?UW are wavelet reflection data. We have found out that the identificationksor
power estimates for the clean speech, noise, and late fefiectWell even with only a few frames of data.
respectively. By using the optimized values forand = as
described in Section II-A, we can compute the respective )
power estimates directly from the observed contaminatedVe have evaluated the proposed method in large vocabulary

signal X (v, 7)wm. Thus, the speech power estimate becom&gntinuous speech recognition (LVCSR). The training dasab
is the Japanese Newspaper Article Sentence (JNAS) corpus

The general expression of the Wiener gain at window fral
w and bandm for background noise and late reflection ar
expressed as

2
’igm —_ S(U5 T)'unn 5 (6)
S(v,m)2,, +N(v, 7). .

wm

and

K

IV. EXPERIMENTAL EVALUATIONS

S, 7)o = X(a, )2, (8) with a total of approximately 60 hours of speech. The test
the noise power estimatN(v,T)Q as setis compo;ed_ of 200 sentences uttered by 50 ;peakers. The
wm vocabulary size is 20K and the language model is a standard
N(v, )2, =~ X(b(i)vﬁ(i))ima (9) word trigram model.
] ] 9 Speech is processed using 25ms-frame with 10ms. shift. The
and the late reflection estimate, (v, 7),,,,, as features used are 12-order MFCQSMFCCs, andAPower.
The AM is a phonetically tied mixture (PTM) HMMs with
X(egj), %j))z}m’ d= 1 8256 Gaussians in total. It is trained using the speech datab
() )2 d—1 X(e(,j) (j))Q with super-imposition of Gaussian noise, that is differieain
Xi(eq 64" ) ym = k=1 y k 1’ k cwm those in the noise profiles [9][10]. We note that in our pragmbs
X(eW, C(lj)_)%uw otherwise method, we use only a single AM in ASR for different

(10) noise and_ SNR conditions. We used seven types of real noise
Wiener filtering is conducted by weighting the contaminate@@S€ noise) in the NAIST database [10]: Car, Computer,
wavelet coefficientX (v, 7)wm With the Wiener gain as, Office, C_rovv_d, Park, Mall and Vf'icuum (_:Ieaner. As_ the res_ult
of combination of the base noise entries, 20 noise profiles
are generated. We considered reverberation tifgg from
X (v, T)wm(enhanced) = X (0, T)wm - Kwms (11) 100ms. to 500ms. with 100ms. interval. In the experiments, w
compare the proposed method against modified wavelet-based
N x methods [4]-[6] in dealing with the reverberation problen. [
Ko = Kwm + Féwfn_ (12 Then we perform post-processing using the ETSI advanced
2 front-end (AFE) [11] to deal with the background noise for
Although this is not a direct calculation of the Wiener gaithese methods.
based on the combined effects of both noise and late reftectio In Fig. 2, we show the ASR performance in word accuracy
we used Eg. (12) for reason of tractability. In Eqg. (11), théor different noise types, SNRs (10, 20dB) and reverberatio

where we define
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Fig. 2. Recognition Performance.

time (200, 400ms.). We note that when a particular noisthe noise source is located at a considerable distance frem t
type is being evaluated, it is held-out during noise profilmicrophone.

generation. (A) is the result when the contaminated data is
not processed and recognized using an AM re-trained with
the same condition. (B) is the result when processed with tHel
improved wavelet-based enhancement that incorporates VAD
and threshold profiles [4]. Another method based on extremg]
clustering [5] is evaluated in (C). The result of waveletfilhg

without optimization [6][7] is shown in (D), while the reswf  ;
the proposed method which incorporates both late reflection
and background noise is given in (E). The results in Fig. 2l
show that the proposed method outperforms existing wavele
based methods in all cases [4]-[7]. By optimizing the watvele
parameters, the enhancement process is tuned to imprdwng t
acoustic model likelihood. As a result, the proposed metho
becomes more effective in the ASR application. 7]

V. CONCLUSION B
We have presented an improved Wiener filtering in the

wavelet domain, by optimizing the wavelet parameters td”
effectively estimate the power of the clean speech, noiqg)]
and late reflection. This optimization is based on the AM
likelihood, and results to a more accurate Wiener gain egém

in suppressing the contaminant signal. Currently, we dethl Wiy
simple additive background noise. In the future, we wilkfigr
investigate its convolutive effect. This scenario occutsew
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