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Abstract—We present an optimization method of the wavelet
parameters for dereverberation in automatic speech recognition
(ASR). By tuning the wavelet parameters to improve the acoustic
model likelihood, wavelet-based dereverberation methods become
more effective in the ASR application. We evaluate several
existing wavelet-based methods and optimize them, based on
our proposed scheme. Experimental evaluations through ASR
experiments demonstrate significant improvement for all methods
with the proposed optimization.

Index Terms: Robustness, Speech recognition, Dereverbera-
tion

I. INTRODUCTION

Reverberation is a phenomenon caused by the reflection of
the speech signal in an enclosed environment. When analyzing
in short time fourier transform (STFT), the current observed
speech frame is smeared with the speech energy of the preced-
ing frames. This degrades the acoustic quality of the speech
signal and is detrimental to the ASR system. The reverberant
speech model X (f,t) we adopt is based on the additive effects
of the early Xp(f,t) and late X1 (f,t) reflection,

X(fvt)% XE(f7t) + XL(fvt)
~ S(f.)H(f,0)+ Y0, S(f.t — d)H(f,d) o

where S(f,t) and H(f,t) are the frequency response of the
clean speech and the room impulse response (RIR), respec-
tively. D is the number of frames, over which the reverberation
(smearing) has an effect. The early reflection is due to the
direct signal and some reflections that occur at earlier time,
while the late reflection, whose effect spans over frames, can
be treated as long-period noise [1][2]. The former is mostly
addressed through Cepstral Mean Normalization (CMN) in the
ASR system as it falls within the frame. In our application,
dereverberation is defined as suppressing the effects of the late
reflection. Since the late reflection can be treated as noise,
we can apply existing wavelet-based denoising techniques
to dereverberation problems based on the context of our
reverberant speech model.

Existing wavelet-based methods are generally designed to
enhance the speech waveform, but this does not guarantee an
improvement in performance for ASR application. In this pa-
per, we present a method of optimizing the wavelet parameters
for dereverberation in ASR. In our proposed scheme, prior
to wavelet-based dereverberation, the wavelet parameters are
optimized to improve the likelihood of the acoustic model. We
expand existing wavelet-based speech enhancement methods

for the dereverberation application. Then, we incorporate the
proposed scheme of optimizing the wavelet parameters for
effective dereverberation in the ASR application. In this paper,
noise and late reflection are jointly referred to as “contaminant
signal”. The paper is organized as follows; Section II gives
the background of the different wavelet-based methods which
we will evaluate and optimize. In Section III, we present the
optimization method of wavelet parameters. Experimental set-
up and ASR evaluation results are presented in Section IV.
Finally, we conclude this paper in Section V.

II. WAVELET-BASED DEREVERBERATION METHODS

Specifically in this paper, we consider five wavelet-based
methods. The last method was previously proposed by the
authors [3].

A. WaveShrink

The basic wavelet enhancement approach [4] is based on
the idea that real-world signals do not necessarily require full
resolution treatment. In speech application, a limited number
of wavelet coefficients in the lower band are deemed suffi-
cient to reconstruct the speech signal. These coefficients are
characterized by higher values compared to the contaminant
signals (i.e. noise or late reflections). Thus, by shrinking the
contaminant wavelet coefficients, its effects are removed. In
general, the waveshrink approach is applicable when the con-
taminant signal is homogeneously concentrated on the other
side of the spectrum (e.g. higher frequencies). Problems may
arise in ASR applications, because some parts of speech have
important information in the higher frequencies (i.e consonants
and unvoiced regions).

B. Thresholding

An improved version of the waveshrink approach is im-
plemented by means of a thresholding algorithm. Unlike its
predecessor, the thresholding approach is more flexible in
dealing with the wavelet coefficients by defining a threshold
criterion. A particular wavelet coefficient of interest may be
shrunk or scaled based on this criterion. An example based on
soft thresholding [5] is defined as

[0 x| < thr
= sign(x)(] = | —thr)
Based on the threshold thr, Eq. (2) can be interpreted as

setting the contaminant subspace to zero, and implement-
ing a magnitude subtraction in the speech plus contaminant

2

x| > thr
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subspace. The threshold that defines the subspace of the
contaminant signal can be calculated [5] as

thr = o/ 2 log(L), ?3)

where L is the length of the contaminant signal with variance
o2. Other thresholding criteria are Hard, Firm, Garrote and
Step — garrote. The thresholding technique has some known
problems; If the spectrum of the contaminant signal is not
uniform, the method has difficulty in distinguishing the desired
subspace from the contaminant subspace. Since thresholding
is directly applied to the wavelet coefficients, the quality of
the reconstructed signal is sensitive to the threshold.

C. Improved Wavelet-based Speech Enhancement System

To address the problems in both the waveshrink and thresh-
olding methods, a more advanced method is proposed [6].
This system employs an automatic pause detection algorithm
using a voice activity detection (VAD) and introduces several
threshold profiles for different types of contaminant signals.
With the VAD, a more accurate estimation of noise power is
achieved. The use of several threshold profiles enables switch-
ing several threshold criteria according to the contaminant
signal. Consequently, the system can cope with colored and
non-stationary contaminant signals.

D. Wavelet Extrema Clustering

Another method based on the adoption of the speech pro-
duction model is the wavelet extrema clustering. It assumes
that the detrimental effects of the contaminant signal introduce
zeros into the overall system and only affects the speech exci-
tation sequence (not the all-pole filter) [7]. A class of wavelets
are employed to decompose the LPC residuals to calculate the
wavelet extrema. The underlying impulsive structure of the
desired speech (non-reverberant) are captured by locating the
extrema which has the characteristics of being well clustered.
The extrema at each wavelet scale are effective indicators of
the impulses (clean speech) in the contaminated signal. These
are used to reconstruct the non-reverberant speech.

E. Wavelet Filtering with Wiener Gain

We have previously expanded the multi-band wavelet do-
main filtering [3] to address the dereverberation problem [8].
The general expression of the Wiener gain at band m [8] is
expressed as

S(v, 1),

m , 4
S(UvT)gn +XL(U’T)2 @

m

Rm =

where S(v, )2, and X (v, T)?n are wavelet power estimates
for the clean speech and the late reflection, respectively. And
v and 7 are the wavelet parameters scale and shift, which will
be explained in Section III. Wavelet filtering is carried out by
weighting the reverberant wavelet coefficients X (v, 7) with
the Wiener gains as,

X (v, T)m(enhanced) = X (0, T)m - Km. Q)

In Eq. (5), the Wiener weighting x,, dictates the degree of
suppression of the late reflection to the observed signal. If the
late reflection power estimate is greater than the estimate of
the speech power, then «,,, for that band may be set to zero or
a small value. This attenuates the effect of the late reflection.
Moreover, if the power of the clean speech estimate is greater,
the Wiener gain will emphasize its effect. The enhanced
wavelet coefficients are converted back to the time domain
through inverse wavelet transform (IWT). In our previous work
[8], the wavelet parameters are not optimized to track the clean
speech and the late reflection given a reverberant observation.

III. OPTIMIZING WAVELET PARAMETERS v AND T

A wavelet is generally expressed as

1 t—T1
V(v,7,t) = —=¥ , 6
(o) = = (57 ©
where ¢ denotes time, v and 7 are the scaling and shifting
parameters respectively. ¥ (t_TT) is often referred to as the

mother wavelet. Assuming that we deal with real-valued
signal, the wavelet transform (WT) is defined as

F(v,T) :/f(t)\I'(U,T,t)dt, 7

where F(v, ) is the wavelet coefficients and f(¢) is the time-
domain function. With an appropriate training algorithm we
can optimize 7 and v so that the wavelet captures specific
characteristics of a certain signal of interest. The resulting
wavelet is sensitive in detecting the presence of this signal
given any arbitrary signal.

For illustration purpose, we will only show the optimization
of the wavelet parameters v and 7 for the wavelet filtering
method discussed in Section II-E. In the wavelet filtering
method, we are interested in detecting the power of clean
speech and late reflection given a reverberant signal.

We optimize the wavelet to detect clean speech and late
reflection separately based on the acoustic model likelihood
as shown in Fig. 1. In ASR, we assume that the speech does
not vary for a certain time-frame. Thus, optimizing a single
wavelet template for speech will be sufficient. In Fig. 1 (top)
we illustrate the optimization of the wavelet for clean speech.
Wavelet coefficients S(v, ), extracted through Eq. (7), are
converted back to time domain s, . Likelihood scores are
computed using the clean speech acoustic model As. The
process is iterated, adjusting v and 7. The corresponding
v=a and 7=« that result to the highest score are seclected.
In the case of the late reflection in Fig. 1 (bottom), D
templates are to be optimized for both scale (vq,...vp) and
shift (71,...,7p). These correspond to D preceding frames
that cause smearing to the current frame of interest. We note
that the effect of smearing is not constant, thus D templates
are created. By estimating the reverberation time T, we
can generate the impulse response and its corresponding late
reflection coefficients hy. Both Ty estimation and impulse
response generation are discussed in [9]. Then, late reflection
observations x, are generated by convolving the clean speech
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Fig. 1. Wavelet optimization scheme.

with hr. Next, wavelet coefficients X (v, 7) are extracted
through WT (Eq. (7)). To make sure that X (v, 7) is void
of speech characteristics, thresholding is applied to X ;, (v, 7).
Speech energy is characterized with high coefficient values [5]
[6] and thresholding sets these coefficients to zero,

X | > thr

. 0
XL_{XL X | < thr

thr is calculated similar to that in Eq. (3). The thresholded
signal is converted back to time domain Z,, » . and evaluated
against a late reflection model )z, . The parameters v and 7 are
adjusted and the corresponding v={b1,...bp} and 7={f1,...0p }
that result to the highest likelihood score are selected. We note
that the acoustic model ) is trained with clean speech data,
while Az, uses the synthetically generated late reflection data
with thresholding applied.

®)

By using these optimized wavelet parameters, we can esti-
mate both the clean speech and late reflection power directly
from the observed reverberant signal X (v, 7) and use these to
estimate the Wiener gain in Eq. (4). Thus, the speech power
estimate becomes

S(v,7)2 ~ X(a,)’

m?

)

and the late reflection power X (v, T)fn estimate

X(by,51)?, d=1

d—1 2

_ X (bg,

i OBy X b a1
otherwise

X1.(bg, Bd)fn ~

(10)
where d (smearing effect) is the d-th frame template (for
k:1,..,D).

IV. EXPERIMENTAL EVALUATIONS

We have evaluated the proposed scheme and the five
wavelet-based methods described in Section II. The training
database is from the Japanese Newspaper Article Sentence
(JNAS) corpus. The open test set is composed of 200 ut-
terances. ASR experiments are carried out on the Japanese
dictation task with a 20K vocabulary. The language model
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Fig. 2. Overall system diagram.

is a standard word trigram model. The acoustic model is a
phonetically tied-mixture (PTM) HMMs with 8256 Gaussians
in total. We experimented in the condition of reverberation
time: T50=200 ms, 400 ms and 600 ms. Reverberant training
data are synthetically produced with the automatically gener-
ated RIR as discussed in [9]. Test performance is evaluated
using real data recorded in a room with known reverberation
time: T0=200 ms, 400 ms and 600 ms. In the experiments,
we used a total number of bands M = 5 which was found to
be effective [1][2]. The wavelet used here is the Daubechies
wavelet which was also used in [8].

The process flow of the experiment is shown in Fig. 2. Dur-
ing training, we optimize the wavelet parameters. Using the
optimized wavelet parameters, we implemented the wavelet-
based dereverberation methods discussed in Section II, then
trained individual acoustic models. During testing, the opti-
mized wavelet parameters were used together with the wavelet-
based dereverberation methods to process the reverberant test
data. Then, processed data were evaluated in ASR. In our
experiments, the actual optimization of the wavelet parameters
may vary for each of the different wavelet-based dereverber-
ation methods, depending on individual unique requirements.
Nevertheless, the criterion of maximizing the likelihood for
the ASR application is maintained for all the methods.

We also implemented a model adaptation based on Maxi-
mum Likelihood Linear Regression (MLLR) [10][11]. Model
adaptation is used to minimize the mismatch between training
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TABLE I
SPEECH RECOGNITION RESULTS FOR DIFFERENT WAVELET-BASED METHODS.

200 ms 400 ms 600 ms
Methods No-adapt | Adapt No-adapt | Adapt No-adapt | Adapt
No processing; clean model 68.6 % 70.3 % 413 % 432 % 21.4 % 24.8 %
No processing; reverb model 754 % 76.2 % 612 % 632 % 321 % 352 %
(A) WaveShrink (Sec. II-A) 75.9 % 76.4 % 63.3 % 648 % | 40.6 % 41.1 %
(A+) WaveShrink + wavelet optimization 76.7 % 77.9 % 65.4 % 67.2 % 44.9 % 46.4 %
(B) Soft thresholding (Sec. 1I-B) 76.5 % 77.8 % 65.8 % 67.5% | 46.7 % 47.1 %
(B+) Soft thresholding + wavelet optimization 78.1 % 79.0 % 67.1 % 68.6 % 492 % 514 %
(C) Improved wavelet-based speech enhancement (Sec. II-C) 773 % 78.5 % 66.7 % 67.9 % 50.6 % 52.1 %
(C+) Improved wavelet-based speech enhancement + wavelet optimization 79.1 % 80.0 % 68.5 % 69.5 % 54.0 % 56.2 %
(D) Extrema clustering (Sec. II-D) 78.4 % 79.6 % 67.1 % 68.2 % 59.7 % 61.5 %
(D+) Extrema clustering + wavelet optimization 80.8 % 81.5 % 69.8 % 70.7 % 62.9 % 64.1 %
(E) Wavelet filtering (Sec. 1I-E) 81.5 % 82.7 % 71.4 % 72.7 % 64.5 % 66.9 %
(E+) Wavelet filtering + wavelet optimization 832 % 84.2 % 74.6 % 76.3 % 68.6 % 69.5 %

and testing conditions. The MLLR adaptation estimates linear
transformations for groups of model parameters to maximize
the likelihood of the adaptation data. In our adaptation exper-
iment, we used 50 adaptation utterances.

We show the ASR performance in word accuracy for all
methods in Table I. “No-adapt” means acoustic model adap-
tation was not used while “Adapt” refers to the effect of the
MLLR adaptation. For reference, we show on the top the re-
sults when the reverberant data are not processed and matched
against clean and reverberant acoustic models, respectively.
We show the results based on waveshrink and thresholding
(Sections II-A and II-B ) in (A) and (B), respectively. The
improvement in (A+) and (B+) from (A) and (B) are the results
when the wavelet parameters are optimized. The improved
wavelet-based enhancement system that incorporates VAD and
threshold profiles (Section III-C) is shown in (C). In (C+),
an improvement in performance is attained when wavelets
are optimized as compared to (C). Another method based on
extrema clustering (Section III-D) is provided in (D) together
with the optimized wavelet version in (D+). The result of our
previous dereverberation approach (Section III-E) [8] is shown
in (E), while the result of incorporating wavelet optimization
discussed in Section III is given in (E+).

The results in Table I show that all the methods (A-
E) benefit from the proposed method. By optimizing the
wavelet parameters, the dereverberation process is more tuned
to improving the acoustic model likelihood. As a result, it
becomes more effective in the ASR application. Moreover, we
observe a consistent improvement in recognition performance
when the model adaptation was conducted.

We note that in (A),(B) and (C), dereverberation is im-
plemented by means of directly thresholding the wavelet
parameters. This may have detrimental effects to the speech
recognition performance due to the non-smooth nature of the
thresholding function. In our method, thresholding is only used
to select the the optimal wavelet parameters and not directly
applied to the wavelet coefficients. The actual weighting of
the wavelet coefficients is through Wiener filtering, which
is a smoother weighting function based on the power ratio
of the estimated clean speech and late reflection. Moreover,

(A),(B),(C),(D) and (E) are originally based on improving the
speech quality (hearing) of the dereverberated signal. However,
improving the speech quality may not necessarily translate to
improvement in ASR performance.

V. CONCLUSION

We proposed to optimize the wavelet parameters used in
dereverberation in ASR. This scheme guarantees that the opti-
mized parameters improve the model likelihood used in ASR.
We have shown that this approach is effective in improving
the ASR performance when applied to different wavelet-based
dereverberation methods. In the future, we extend this work to
deal with both noisy and reverberant environment conditions.
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