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Abstract—Speech recognition under reverberant conditionisa |l. SPECTRAL SUBTRACTION-BASED DEREVERBERATION

difficult task. Most dereverberation techniques used to adcess In thi fi tline th fi ld berati
this problem enhance the reverberant waveform independent n this section we outiine the conventional dereverbenalio

to that of the speech recognizer. In this paper, we expanded technique based on multi-band SS [1][2]. The reverberant
and improved the conventional Spectral Subtraction-basedSS) speech signal is modeled as

dereverberation technique. In our proposed approach, the nalti-
band SS parameters are optimized to improve the recognition
performance. Moreover, the system is capable of adaptively
fine-tuning these parameters in the acoustic modeling phase
Experimental results show that the proposed method signifantly Where.a:E(n), zz(n) are the uncorrelated.early and late
improves the recognition performance over the conventiona 'eflection components of the reverberant signah). If we

approach. denotes(n) as clean speech, and the measured room impulse
ash(n) = [hg(n), hr(n)] where early componentsz(n) and
late components,(n) of the whole samplé(n) are identified

Reverberation is a phenomenon caused by overlappingiwfadvance, Eq (1) can be written as,
signals due to reflection attributed by room environmentsTh
degrades the performance of distant-talking speech rétogn z(n) = hg * s(n) + hr * s(n). 2)
applications. Thus, it is imperative to minimize its effedfe
have proposed a dereverberation approach based on mu|t||.n the SS-based dereverberation, we are Only interested in
band Spectral Subtraction (SS) [1][2]. This method employ§coveringeg(n) fromz(n). Thus, we use spectral subtraction
SS similar to that of [3] by removing only the late component® remove the effect of (). Theoretically, it is possible to
of the reverberant speech signal. The multi-band coeffisieiemove entirely the effect of the whole impulse respaige),
are optimized using Minimum Mean Square Error (MMSERUt robustness to the microphone-speaker location carmot b
criterion. Although this scheme works well, this criteriorRchieved since the early componehis(n) have high energy
is inclined in optimizing the effect of dereverberation irRnNd is dependent on the distance between the microphone
the waveform level. Typically, this is a speech enhancemeiid speaker as explained in [1] [2]. In the multi-band SS
approach which improves the quality of the signal prior t8PpProach, the effect afz(n) is addressed through Cepstral
acoustic modeling and recognition. This set-up treats théean Normalization (CMN), which can be handled by the
speech enhancement and recognition independently. recognizer as it falls within the frame. Thus, oniy (n) is

In th|s paper' we propose to treat these two interdeperbderf@moved through the multi-bal’ld SS as |tS effeCt fa||S OBtSid
by optimizing the dereverberation parameters based on #h€ frame in which the recognizer operates. The power spectr
speech recognizer. The criterion is modified to directly off 2£(n) can be obtained through the multi-band SS,
timize the likelihood of the recognizer. In addition, we esdb

z(n) = zp(n) +xr(n), 1)

I. INTRODUCTION

the optimization process in the acoustic model training. As IX(f,7))? = 01| X(f,7)]?

a result, the dereverberation parameters are updatedchterget it | X(f,7)]? = 6| XL(f,7)> >0
with the acoustic model. This kind of approach, where front- [ Xe(f,7)l =

end speech processing is optimized for recognition is shown BIXL(f,7)|? otherwise

to be effective with promising results in microphone array 3)
applications [4][5] and in Vocal Tract Length Normalizatio for f € B, where By is the corresponding band, with
(VTLN) [6][7][8]. the flooring coefficient| X (f,7)|?> and | X.(f,7)|? are the

The organization of the paper is as follows; in section 2, wgower spectra of the reverberant signal and its late reflecti
show the overview of the multi-band SS as a dereverberatimspectively. The values @ coefficients are derived through
scheme. In section 3, we present the optimization in thescoan offline training which minimizes the error of the estimate
tic model training phase. This involves optimization of théX; (f,7)| under the MMSE criterion. Details in the choice
multi-band SS parameters based on the likelihood. In sectiof the number of bands, the valuesdtoefficients (through
4, the optimization during decoding is presented. Expenii@e offline training), and the effective identification of thetda
results are given in section 5, and we will conclude this papeomponents of the impulse responisg(n) are discussed in
in section 6. [1] [2].
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Fig. 1. Block diagram of the proposed optimization technique in d@leeustic training phase which is composed of batch and nmenéal
methods.

[1l. OPTIMIZATION OF DEREVERBERATIONPARAMETERS  evaluation is applied to alM bands independently. After all
FORACOUSTICMODELING of the bands are optimized, the set of optimal SS coefficients

The conventional approach adopts MMSE in deriving thd(1)opt: -, 6(M)opt] is used to process the reverberant data
coefficients used in dereverberation. The derived coefftsie 21d proceed to acoustic model training. The resulting aus
are used to process the reverberant signal, and then thetacodnodel will be used in the actual recognition.
model is trained using the enhanced data. We present tg/o
methods that optimize the dereverberation parameterglyjoin
with acoustic modeling. This principle is also applied agri ~We extend the abovéatch optimization method. The
actual recognition which will be discussed in Section 4. THdditional process introduced is shown in dashed linesgn Fi

Incremental Optimization Method

two methods are explained as follows: 1. Right after the optimal coefficient of band 1 is found,
S the acoustic model is re-estimated using the updated SS
A. Batch Optimization Method parameters. The newly re-estimated moaelis then used in

The proposed optimization of the multi-band SS is showthe likelihood evaluation block for band 2, and this process
in Fig. 1. We opt to optimize each band sequentially startirig iterated untilo(M),,; is found for the Mth band. This
from the first bandn = 1 to m = M. The band coefficient to approach, referred to a@cremental optimization method,
be optimized is allowed to change within a close neighbothobtias the same principle with thieitch method, except for the
n/\ wheren = 1..N and A = 0.02. The reverberant incremental updates of the HMM paramefein every band.
observation data is dereverberated using the multi-band SSn the batch method, we fixed\ = AyrarsE all throughout the
The rest of the bands are fixed to the MMSE-based estimat@nds. The incremental re-estimation allows us to treah eac
except for the band to be optimized. Thus, if the band to &@nd interdependently in a sequential manner as opposed to
optimized is bandn = 1, we generate a set of coefficientghe batch optimization method where each band is treated
d(1,n) = [6(W)pmmse + n A, 62 mmse, d(m)umse  independently.
sy O(M)pmsg], and execute SS using the generated co-
efficients. The resulting datag(0(1,n)) are evaluated us-
ing the HMM-based acoustic model which is trained with
data processed with MMSE-based SS parameters, denoted d&surther optimization is implemented during actual recog-
A = Aumse. A Likelihood score is computed for each ofnition. Using the acoustic model processed with the optimal
the data processed with different SS conditions. Basedisn tmulti-band SS parameters in section 3, we evaluate a like-
result, 6(m)op: that has the corresponding highest likelihootlhood given a dereverberated test utterance. The revanber
score is selected. The whole process from SS to likelihotest data are processed in the same manner as the optimizatio

IV. OPTIMAL PARAMETER SELECTION DURING
DECODING
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TABLE |
SYSTEM SPECIFICATION USED IN EVALUATING THE SYSTEM

Sampling frequency| 16 kHz
Frame length 25 ms
Frame period 10 ms
Pre-emphasis 1-0.97271
Feature vectors 12-order MFCC,
12-order AMFCCs
1-order AE
HMM 8000 Gaussian pdfs
Training data Adult by INAS
Test data Adult by INAS
TABLE Il
BASIC RECOGNITIONRESULTS
Methods 200msec| 600msec
(A) No processing 68.6 % | 44.0%
(B) Conventional: MMSE 80.1 % | 62.3%
(C) Batch (training only) 81.3 % 64.3%
(D) Incremental (training only) 82.4 % 65.4%
(E) Batch (training/decoding) 83.1 % 66.1%
(F) Incremental (training/decoding) 84.5 % | 67.5%

of the bands in the acoustic training phase, producing afsethatch training. In ) and ), we show that the performance
processed utterances. These utterances are then evalititedof the system is further improved when optimization is also
the acoustic model. The corresponding multi-band coefficieapplied in the decoding process. Thus, optimizing derearerb
that gives the highest likelihood is selected for each bamdion in both the acoustic modeling phase and decoding phase
which is similar to that shown in Fig 1, and used for theesultin a synergetic effect in improving recognition aazy.

final recognition. As a whole, we have achieved a relative 5% improvement over

the baseline MMSE-based method.
V. EXPERIMENTAL EVALUATION

For evaluation of the proposed method, we used the trainiRg Robustness of the Proposed Method
database from Japanese Newspaper Article Sentence (JNAS)e also performed experiments regarding the robustness
corpus. The test set is composed of 200 utterances taks#nthe proposed approach. By creating a mismatch of the
outside of the training database. System specificationris sureverberant condition between the training and testing,de¢
marized in Table 1. Recognition experiments are carried ouiestigate the robustness of the proposed method as shown
on the Japanese dictation task with 20K-word vocabulaiy. Fig. 2. It is apparent that the change in the recognition
The language model is a standard word trigram model. Viierformance from (matched) to (mismatched) is much smaller
experimented using two reverberant conditions: 200 msec amder the proposed method than in the conventional approach
600 msec. Reverberant data were made by convolving thsing MMSE criterion.
clean database with the measured room impulse response ) )
[9]. The measured room impulse response contained flutfer Evaluation with MAP and MLLR
echo which is inherent of the actual room acoustics. In this Then, we extend the proposed optimization technique to
experiment we use total number of bantls = 5 which is the adaptation scheme like MAP and MLLR. In this case, we
consistent to that of the former work [1][2]. execute an iterative MAP and MLLR, and in each iteration

. we optimize the dereverberation parameters together \ih t

A. Recognition Performance 50 adaptation utterances. Recognition results shown inr&ig

Table 1l shows the basic recognition performance (wor8l demonstrates that the proposed approach is effective in
accuracy) of the proposed method in 200 msec and 600 mge@junction with adaptation, especially with MLLR, and the
reverberant conditionsA() is the performance for reverberantadvantage over the conventional method is maintained after
test data (without dereverberation) using a clean acoustig adaptation.
model. B) is for the conventional MMSE-based approach ) L
when both the test and training data are dereverberatedivth D- Faster Implementation of the Proposed Optimization Tech-
conventional MMSE-based SC) and (D) are the results of Mdue
the proposed optimization for the batch and incrementahmet The proposed optimization process outlined in Fig 1 that
ods, respectively. It is confirmed that the proposed frart-e uses HMM in evaluating the likelihood is confirmed to be ef-
dereverberation optimization considering acoustic lh@bd fective in optimizing the dereverberation parameters. Eosy,
is more effective than the conventional MMSE-based methdtlis process takes a lot of time and it is desirable to refdica
And the incremental model update performs better than ttiee same performance in a shorter period of time. We try to use
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©

o0}
\‘
(6]

S | 200msec s 600 msec p
g S Propose

86
§ > 70 . Method
s @
3 84 3 65 .
< g . Conventional
o
S 82 g 60 (MMSE)
= 2

80 55

EM MAP MLLR EM MAP MLLR

Fig. 3. Performance when used in adaptation
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Gaussian Mixture Model (GMM) with 64 mixture components 0

instead of HMM in finding the optimal parameters. A separates
HMM is trained/updated only after the optimal parametees ar;
found through GMM. This means that GMM is used for the $
optimization process and HMM is used for the actual speec§
recognition. This approach has been shown to be effective iQ
VTLN [8]. o

In Fig. 4, we show the result for using both GMM and§
HMM in finding the optimal multi-band SS parameters. We
can observe a negligible difference in word accuracy betwee 95 200 msec 600 msec
GMM and HMM. With the GMM implementation, we reduced
optimization time up to 1%. This implementation makes
decoding in section 4 practical.

Reverberation time

Fig. 4. Performance comparison between GMM and HMM in opti-
mizing the multi-band coefficients

VI. CONCLUSION

We have presented the front-end dereverberation technique
which is optimized based on the likelihood of the speech
recognizer. The method is applied both in the acoustic modehlizing significantly better performance than the conven
training phase and the actual decoding phase. In the acoustinal MMSE-based method which optimizes the parameters
training pahse, the dereverberation parameters are @gtniindependent of speech recognition. We have also presented a
using the training data. In the decoding phase, the systenmisthod of speeding up the optimization process through the
able to update the dereverberation parameters based onubke of GMM. In our future works, we will expand the current
actual test data. This is very important since it enables thpproach to an unknown room impulse response, where we can
system to adjust to the changes of the reverberant conditimplace the room acoustics dependency with recognizerebas
during the actual recognition. Both effects are confirmedptimization in enhancing the reverberant speech signal fo
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robust speech recognition. We will also attempt to remoee th
dependency of the current approach to room impulse response
measurements.
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