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Abstract—This paper describes a semi-supervised multichannel
speech separation method that uses clean speech signals with
frame-wise phonetic labels and sample-level speaker labels for
pre-training. A standard approach to statistical source separation
is to formulate a probabilistic model of multichannel mixture
spectrograms that combines source models representing the time-
frequency characteristics of sources with spatial models repre-
senting the covariance structure between channels. For speech
separation and enhancement, deep generative models with latent
variables have successfully been used as source models. The pa-
rameters of such a speech model can be trained beforehand from
clean speech signals with a variational autoencoder (VAE) or its
conditional variant (CVAE) that takes speaker labels as auxiliary
inputs. Because human speech is characterized by both phonetic
features and speaker identities, we propose a probabilistic model
that combines a phone- and speaker-aware deep speech model
with a full-rank spatial model. Our speech model is trained with
a CVAE taking both phone and speaker labels as conditions.
Given speech mixtures, the spatial covariance matrices, latent
variables of sources, and phone and speaker labels of sources
are jointly estimated. Comparative experimental results showed
that the performance of speech separation can be improved by
explicitly considering phonetic features and/or speaker identities.

Index Terms—multichannel source separation, speech separa-
tion, variational autoencoder

I. INTRODUCTION

Multichannel source separation aims to reconstruct source
signals from observed mixture signals obtained by a micro-
phone array. It is a fundamental technique for automatic speech
recognition (ASR) [1] since most ASR systems require the
speech signals to be separated from mixture signals that contain
multiple speakers and noise.

One approach to multichannel source separation is to use a
unified probabilistic model based on source models representing
the power spectral densities (PSDs) of sources and a spatial
model representing the sound propagation process. Nonnegative
matrix factorization (NMF) [2] has often been used as a
source model. NMF approximates the PSDs of each source
spectrogram as the product of two low-rank matrices corre-
sponding to a set of basis spectra and a set of their activations,

respectively. Multichannel NMF (MNMF) [3]–[5] was proposed
by integrating an NMF-based source model with a full-rank
spatial model [6]. A determined version of MNMF called
independent low-rank matrix analysis (ILRMA) [7] was then
derived by restricting the mixing system to a determined rank-1
spatial model. The demixing system can be estimated with a
stable and fast update rule called iterative projection [8]. A
drawback of the NMF-based source model, however, is that its
low-rank assumption is incompatible with speech spectrograms.

One promising approach to avoid the low-rank assumption
is to use the decoder of a variational autoencoder (VAE) [9]
trained on clean speech signals as a deep speech model for
speech enhancement [10]–[13]. In a semi-supervised speech
separation method called multichannel VAE (MVAE) [14]–[16],
a rank-1 or full-rank spatial model is integrated with a speaker-
aware deep speech model trained with a conditional VAE
(CVAE) [17] that takes speaker labels as auxiliary inputs and
learns speaker-independent latent features. In speech separation,
the speaker labels and the latent features are estimated from
the current estimate of speech signals, and the deep speech
model with the estimated speaker labels and latent features
are then used for separating mixture signals into speaker-
coherent speech signals. These two mutually-dependent steps
are iterated.

Because the selective listening ability of humans is consid-
ered to make effective use of not only speaker identity features
but also phonetic features, we propose a semi-supervised speech
separation method that integrates a phone- and speaker-aware
deep speech model with a full-rank spatial model. In fact,
phonetic features have been proven to improve the perfor-
mances of speech separation and ASR [18]–[20]. Our deep
speech model is trained with a CVAE that takes both a sample-
level speaker label and frame-wise phonetic labels as auxiliary
inputs. In addition, phone and speaker classifiers are trained
in a supervised manner by using annotated speech signals.
Given speech mixtures, the full-rank spatial covariance matrices
(SCMs) and phone and speaker labels of sources are jointly
estimated by using the trained speech model and classifiers.
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Fig. 1: An overview of the proposed method. The phone and
speaker labels Zp

n and zsn of each source n are updated by
backpropagation or classifiers.

The major contribution of this paper is to show that both
phonetic features and speaker identities are important clues for
computational speech separation.

II. RELATED WORK

This section reviews speaker-aware and phone-aware speech
separation and speech enhancement methods, especially the
ones that utilize speech generative models based on a deep
neural network (DNN).

A. Deep Speech Models

Deep generative models have been used as speech models
in semi-supervised speech enhancement [10]–[13] and speech
separation [14]–[16]. Those models are typically trained in the
VAE framework [9]. A VAE consists of a DNN-based encoder
that estimates the distribution of latent variables given the
observed variables, and a DNN-based decoder that estimates
the distribution of observed variables given the latent variables.
As a deep speech model, the decoder usually represents the
speech PSDs. In a CVAE [17], both encoder and decoder are
conditioned by auxiliary variables.

B. Speaker-Aware Speech Separation

The deep speech model in the MVAE [14], [15] is trained
using a CVAE on clean speech signals with speaker labels.
The speaker label of each sample is given to both the encoder
and decoder. In the separation phase, the speaker labels are
estimated and kept coherent over time. Although the MVAE
achieves good separation performance, the speaker labels has
limited effect because both encoder and decoder tend to ignore
the labels by estimating latent features that can reconstruct
speech spectrograms without utilizing the speaker labels [16].

C. Phone-Aware Speech Separation and Enhancement

Phonetic features has scarcely been dealt with for speech
separation and speech enhancement. Wang et al. [19] unified
an HMM-DNN-based ASR system and phone-specific DNN
models for speech enhancement. In the test phase, the ASR
system provides the phone label of each frame and the phone-
specific models are then used to perform speech enhancement.

Takahashi et al. [20] proposed a transfer learning approach
that incorporates phonetic and linguistic information. In the
test phase, a DNN-based separation model iteratively takes as
inputs features extracted using an end-to-end ASR model.

III. PROPOSED METHOD

This section describes the proposed multichannel speech
separation method that integrates a phone- and speaker-aware
deep speech model with a full-rank spatial model. Fig. 1 shows
an overview of the proposed method.

A. Problem Specification

Suppose that there are N sources (speakers) and M mi-
crophones. Let sft = [s1ft, . . . , sNft]

T ∈ CN and cnft =
[cnft1, . . . , cnftM ]T ∈ CM be the short-time Fourier transform
(STFT) coefficients of the sources and those of the image
of source n, respectively, at a time-frequency (TF) bin of
frequency f and time t. The mixture xft is given by

xft =

N∑
n=1

cnft. (1)

Given mixtures X = {xft}F,T
f=1,t=1 as observed data, our goal

is to estimate source images C = {cnft}N,F,T
n=1,f=1,t=1, where

F and T are the number of frequency bins and that of time
frames, respectively.

B. Source Modeling

We formulate a phone- and speaker-aware deep speech model
that represents the generative process of a complex speech
spectrogram under a condition that frame-wise phonetic labels
and a sample-level speaker label are given. The TF bins of each
source are assumed to follow circularly-symmetric complex
Gaussian distributions as follows:

snft ∼ NC(0, λnft), (2)

where λn = {λnft}F,T
f=1,t=1 represents the PSDs of source n

determined by a DNN with parameter θ as follows:

λn = gn ·DNNθ
(
Zn,Z

p
n, z

s
n

)
, (3)

where gn ∈ R+ represents the overall gain of source n,
Zn={znt}Tt=1 ∈ RD×T is a set of frame-wise latent variables
whose prior distribution is the standard Gaussian N (0, I),
Zp

n = {zpnt}Tt=1 ∈ RP×T is a sequence of one-hot vectors
representing frame-wise phonetic labels (P is the number of
kinds of phones), and zsn ∈ RS is a one-hot vector indicating a
speaker label (S is the number of known speaker identities). Zn

is supposed to represent the acoustic characteristics other than
phonetic features and speaker identities such as fundamental
frequencies.

C. Spatial Modeling

To represent relatively long reverberation, we use a full-rank
spatial model [6] as follows:

xft ∼ NC

(
0,

N∑
n=1

λnftRnf

)
, (4)
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where Rnf ∈ SM+ is a full-rank SCM and SM+ denotes the
set of complex positive semidefinite matrices of size M . The
generative model of X, i.e., the log-likelihood function of
λ = {λn}Nn=1 and R = {Rnf}N,F

n=1,f=1, is given by

log p(X|λ,R) =

F∑
f=1

T∑
t=1

logNC(xft|0, X̂ft)

= −
F∑

f=1

T∑
t=1

(
Tr(XftX̂

−1
ft ) + log |X̂ft|

)
+ const, (5)

where Xft = xftx
H
ft ∈ SM+ and X̂ft =

∑N
n=1 λnftRnf ∈

SM+ are observed and reconstructed matrices, and ·H is the
Hermitian transposition.

D. Pre-training of Source Model
The CVAE [17] framework is used to train the deep speech

model given by (3). Suppose we have the PSDs of clean
speech signals {Si}Ii=1 ∈ RI×F×T

+ with frame-wise phonetic
labels {Zp

i }Ii=1 ∈ {0, 1}I×P×T and speaker labels {zsi}Ii=1 ∈
{0, 1}I×S as training data, where I is the number of samples.
Let {Zi}Ii=1 ∈ RI×D×T be the corresponding latent vari-
ables. We aim to train a probabilistic decoder pθ(Si|Zi,Z

p
i , z

s
i)

as the source model by maximizing the marginal likelihood
pθ(Si|Zp

i , z
s
i). Because pθ(Si|Zp

i , z
s
i) and the true posterior

density pθ(Zi|Si,Z
p
i , z

s
i) are intractable, we introduce a varia-

tional posterior distribution qφ(Zi|Si,Z
p
i , z

s
i) to approximate

the true posterior. We here aim to maximize a variational lower
bound LCVAE(θ,φ) derived as follows:

log pθ(Si|Zp
i , z

s
i)

≥
∫
qφ(Zi|Si,Z

p
i , z

s
i) log

pθ(Si|Zi,Z
p
i , z

s
i)p(Zi)

qφ(Zi|Si,Z
p
i , z

s
i)

dZi

= Eqφ(Zi|Si,Z
p
i ,z

s
i)
[log pθ(Si|Zi,Z

p
i , z

s
i)]

−KL(qφ(Zi|Si,Z
p
i , z

s
i)||p(Zi)) := LCVAE(θ,φ), (6)

where KL(q||p) denotes the Kullback-Leibler (KL) divergence
between two probability distributions q and p, and the equality
holds if and only if pθ(Zi|Si,Z

p
i , z

s
i) = qφ(Zi|Si,Z

p
i , z

s
i). We

build a CVAE that consists of a decoder pθ(Si|Zi,Z
p
i , z

s
i) and

an encoder qφ(Zi|Si,Z
p
i , z

s
i) formulated as follows:

pθ(Si|Zi,Z
p
i , z

s
i) =

F∑
f=1

T∑
t=1

NC([Si]ft | 0, [λ̂i]ft), (7)

qφ(Zi|Si,Z
p
i , z

s
i) =

D∑
d=1

T∑
t=1

N ([Zi]dt | [µi]dt, [σ
2
i ]dt), (8)

where λ̂ ∈ RF×T
+ are the output of the decoder, and µi ∈

RD×T and σ2
i ∈ RD×T

+ are the output of the encoder. The
first term of (6) can be approximated by using a Monte Carlo
integration method as follows:

Eqφ(Zi|Si,Z
p
i ,z

s
i)
[logpθ(Si|Zi,Z

p
i , z

s
i)]

' 1

L

L∑
l=1

log pθ(Si|Z(l)
i ,Zp

i , z
s
i), (9)

where L is the number of samples. The second term of (6)
can be calculated analytically as follows:

−KL(qφ(Zi|Si,Z
p
i , z

s
i)||p(Zi))

=
1

2

D∑
d=1

T∑
t=1

(
1 + log([σi

2]dt)− [µi]
2
dt − [σ2

i ]dt
)
. (10)

The lower bound LCVAE(θ,φ) given by (6) can be approx-
imately calculated by (7)–(10). Using this lower bound, the
parameters θ and φ can be optimized jointly by a stochastic
gradient descent (SGD) method. The decoder is then used as
the deep speech model in (3).

We also train phone and speaker classifiers. The encoder
and the classifiers are used to initialize Z, Zp

i , and zsi before
source separation. As we will describe in Section III-E, the
classifiers can also be used to update these parameters.

E. Source Separation

Given X, we aim to estimate g = {gn}Nn=1, Z = {Zn}Nn=1,
Zp = {Zp

n}Nn=1, Zs = {zsn}Nn=1, and R that maximize the log-
likelihood function given by (5). Because (5) is hard to directly
maximize, we use a minorization-maximization algorithm that
maximizes a lower bound L(λ,R) of (5) given by

log p(X|λ,R) ≥ −
∑
n,f,t

Tr(XftΦ
H
nftR

−1
nf Φnft)

λnft

−
∑
n,f,t

λnftTr(Ω
−1
ft Rnf ) + const := L(λ,R), (11)

where Φnft and Ωft are auxiliary variables and the equality
holds if and only if Φnft = λnftRnf

(∑
n λnftRnf

)−1
and

Ωft = X̂ft. The update rule of g is given by

gn ← gn×√√√√∑f,t[DNNθ
(
Zn,Z

p
n, zsn

)
]ftTr(X̂

−1
ft XftX̂

−1
ft Rnf )∑

f,t[DNNθ
(
Zn,Z

p
n, zsn

)
]ftTr(X̂

−1
ft Rnf )

.

(12)

The update rule of R is given by

Rnf ← (RnfAnfRnf )#B−1nf , (13)

where Anf =
∑

t λnftX̂
−1
ft XftX̂

−1
ft , Bnf =

∑
t λnftX̂

−1
ft .

A#B = A
1
2 (A−

1
2 BA−

1
2 )

1
2 A

1
2 denotes the geometric mean

of two symmetric positive definite matrices [21].
Z, Zp, and Zs can be updated by backpropagation. Since

each element of zpnt and zsn should be positive and their
summation should be one, we define ap

nt ∈ RP and as
n ∈ RS

as parameters to be updated and obtain zpnt and zsn by applying
the softmax function to ap

nt and as
n. Alternatively, the phone

and speaker classifiers can be used to update Zp and Zs.
Specifically, separated signals are fed into the classifiers to
derive new Zp and Zs every few iterations.

Source separation is performed with a multichannel Wiener
filter after the lower bound is converged as follows:

ĉnft = λnftRnfX̂−1ft xft. (14)
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Fig. 2: Network architecture of the CVAE.

IV. EVALUATION

This section reports our comparative experiment conducted
to validate the effectiveness of using phonetic features and/or
speaker identities for speech separation.

A. Experimental Conditions

We used the WSJ0 [22] training set (83 speakers, 15.15
hours) for evaluation. We randomly selected two utterances
per speaker and synthesized 83 two-speaker mixtures using
Pyroomacoustics [23] (N = 2). The reverberation time RT60

was 0 or 129 ms and the number of microphones was M = 2.
The rest of the utterances were used for the pre-training of
deep speech models. The phonetic labels of the utterances were
obtained by performing forced alignment with a pre-trained
GMM-HMM-based acoustic model used for ASR. The number
of kinds of phones was P = 72.

The deep speech model was trained with a CVAE as de-
scribed in Section III-D. In the same way as previous studies
[14], [15], we used gated convolutional networks [24] to build
the CVAE and the classifiers as shown in Fig. 2. The power
spectrograms were obtained by STFT with a window length
of 1024 samples (64 ms) and a shift interval of 256 samples
(16 ms). We used AdamW optimizer [25] with a learning rate
of 0.001 and L2 regularization of 0.01 to train the CVAE and
classifiers. In addition, gradient clipping [26] with threshold
2.0 and learning rate warmup were applied for the stability of
training. We experimented with different settings of dimension
of the latent variable Z.

In the separation phase, the parameters of the source models
and the spatial model were updated iteratively for 150 iterations.
The backpropagation was performed 40 times in one iteration,
and Φ and Ω were updated every 4 times. We used AdamW
optimizer [25] with a learning rate of 0.002 to update the
parameters by backpropagation. Additionally, we applied a
weight decay of 0.2 to Z in order to force Z to fit its prior
distribution. Z was always updated by backpropagation, and
Zp and Zs were updated by backpropagation or using the
classifiers. The parameters were initialized with the separated
signals and the separation matrix obtained by ILRMA [7] run
for 100 iterations. Z, Zp, and Zs were initialized by the outputs
of the encoder and the classifiers given the separated signals.

For comparison, we tested a basic speech model trained with
a vanilla VAE [12], a speaker-aware model trained with a CVAE
conditioned by a speaker label only, and a phone-aware model

TABLE I: Average SDRs and phone or speaker classification
accuracies of the phone-aware method and the speaker-aware
method (RT60 = 129 ms).

Model Method for Update SDR (dB) Accuracy
CVAE Backpropagation 14.74± 3.89 3.17%

(only phones) Classifier 14.92± 3.73 55.58%
CVAE Backpropagation 15.18± 3.25 92.17%

(only speaker) Classifier 14.80± 3.69 78.92%
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Fig. 3: Average SDRs and speaker classification accuracies
with respect to the dimension of Z (RT60 = 129 ms)

trained with a CVAE conditioned by phonetic labels only. All
these models as well as the proposed phone- and speaker-aware
speech model were trained by using the same data. The source-
to-distortion ratio (SDR), source-to-interference ratio (SIR),
and source-to-artifacts ratio (SAR) [27] were used as evaluation
measures. We also tested an oracle setting that ground-truth
labels are given to the source model and an oracle setting that
ground-truth source images are directly used as λ in (3).

B. Experimental Results

Table I shows the SDRs and the classification accuracies
of the phone-aware method and the speaker-aware method.
While the backpropagation failed to estimate phonetic labels
Zp, it successfully estimated speaker labels Zs. We thus report
the results obtained by updating Zp with the phone classifier
and/or updating Zs by backpropagation.

Fig. 3 shows the average SDRs of the proposed method
and the baseline method using the basic speech model, and
the speaker classification accuracies of the proposed method
with different dimensions of Z. We found that the separation
performance was sensitive to the dimension of Z. Although
a larger dimension led to precise speech modeling, the sep-
aration performance and the speaker classification accuracy
were degraded. This would be because the estimation of Z
easily gets stuck in bad local optima and Z tends to represent
phonetic features and speaker identities, limiting the effect of
Zp and Zs for speech modeling. The dimension per frame of
Z was set to 4 in the following results because it achieved the
best separation performance in all methods.

The evaluation results are shown in Table II. The proposed
phone- and speaker-aware method achieved the best separation
performance. We found that the soft representation of speaker
labels estimated by backpropagation gives better performance
than using one-hot vector representation. As a result, the
speaker-aware methods overperformed the oracle setting using
ground-truth labels. We also found that the proposed method
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TABLE II: Speech separation performances of the proposed and compared methods.
(a) RT60 = 0 ms

Method Zp Zs SDR (dB) SIR (dB) SAR (dB) Zp Accu. Zs Accu. Oracle SDR1 (dB)
VAE − − 22.87± 6.64 27.70± 8.98 27.37± 3.46 − − −

CVAE (only phones) X − 23.30± 6.46 28.11± 8.86 27.89± 2.73 63.78% − 23.37± 6.40
CVAE (only speaker) − X 23.66± 6.55 28.56± 8.98 28.36± 3.05 − 86.14% 23.40± 6.58

Proposed Method X X 23.76± 6.54 28.53± 8.93 28.51± 2.72 64.08% 87.35% 23.50± 6.15
Oracle Setting2 − − 28.40± 2.17 35.15± 2.90 29.92± 2.07 − − −

(b) RT60 = 129 ms
Method Zp Zs SDR (dB) SIR (dB) SAR (dB) Zp Accu. Zs Accu. Oracle SDR1 (dB)

VAE − − 15.06± 3.31 21.79± 3.31 17.08± 1.63 − − −
CVAE (only phones) X − 14.92± 3.73 21.73± 6.01 16.99± 1.88 55.58% − 15.19± 3.06
CVAE (only speaker) − X 15.18± 3.25 22.04± 5.59 17.15± 1.64 − 92.17% 15.18± 2.96

Proposed Method X X 15.46± 2.78 22.45± 5.04 17.31± 1.47 56.74% 95.18% 15.38± 2.73
Oracle Setting2 − − 16.79± 0.90 27.49± 1.98 17.24± 0.87 − − −

1Ground-truth labels are given to the source model of λ in (3) 2Ground-truth source images are directly used as λ in (3)

could help to mitigate the block permutation, resulting in a
less standard deviation of the separation performance under the
condition of RT60 = 129 ms. This indicates that the proposed
speech model was effectively trained with the help of phonetic
and speaker labels such that only frequency-coherent speech
spectrograms are allowed to be generated.

V. CONCLUSION

This paper presented a semi-supervised speech separation
method that integrates a phone- and speaker-aware deep speech
generative model and a full-rank spatial model into a unified
probabilistic model. The deep speech model is pre-trained
on clean speech signals with frame-wise phonetic labels and
sample-level speaker labels. In the test phase, the latent features,
the phonetic labels, and the speaker labels are jointly inferred by
backpropagation or classifiers trained in a supervised manner.
We experimentally showed that both phonetic and speaker
features improved the performance of speech separation.
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