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ABSTRACT

This paper presents the use of online Variational Bayes method for
online Voice Activity Detection (VAD) in an unsupervised context.
In conventional VAD, the final step often relies on state machines
whose parameters are heuristically tuned. The goal of this study is to
propose a solid statistical scheme for VAD using online model com-
parison which is provided from the Variational Bayes framework. In
this scheme, two models are estimated online in parallel: one for the
noise-only situation , and the other for the noise-plus-signal situation
The VAD decision is done automatically depending on the selected
model. An experimental evaluation on the CENSREC-1-C database
shows a significant improvement by the proposed method compared
to conventional statistical VAD methods.

Index Terms— Sequential Estimation, Robustness, Voice Ac-
tivity Detection, Variational Bayes

1. INTRODUCTION

Voice Activity Detection (VAD) is the task of segmenting speech
boundaries from audio signals, and is important for many speech
applications, e.g. as a front-end for Automatic Speech Recogni-
tion (ASR) [1]. Especially, noise-robust VAD becomes important
for ASR in noisy environments, since the number of insertion errors
becomes large otherwise [2].

VAD methods are concerned with two sub-tasks. First, a set of
features is selected to be robust to different kinds of noise. A clas-
sification method is then designed to segment speech sections from
the feature vectors. Recently, several methods based on supervised
training of classifiers, such as GMM, SVM and linked HMM, have
been investigated. The best performance is obtained when the train-
ing data and test data have similar distribution. If there is a mismatch
between training and unseen data, however, significant degradation
is often observed. It is often the case that the system needs to oper-
ate in any environment without training the model. In this study, we
focus on an approach of unsupervised, online classification, without
requiring training data. Such classifiers often rely on a state machine
with one or several thresholds updated from SNR estimation. As
noted in [3], those state machines often rely on some heuristics for
the noise floor estimation, and usually have several modes to adapt
the classification to different SNRs. The goal of this study is to de-
velop a statistical scheme for online classification, with a reliability
measure for an alternative to manually tuned mode transitions.

For simplicity, we assume a scalar feature relevant for VAD,
such as energy and High Order Statistics (HOS, [4]), is available.
Each class (speech and non-speech) is assumed to follow a normal
distribution whose parameters (mean and variance) change online.
When both speech and noise are present in the signal, the classifi-
cation problem is reduced to the online estimation of the parameters
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of a binary mixture model. However, the assumption of a binary
mixture model is not correct in the case of noise-only sections, and
the online estimated classifier cannot be used reliably. Therefore, we
introduce an online model comparison scheme which can switch to
unimodal model for those sections. Specifically, we use the Varia-
tional Bayes (VB) framework which provides an explicit approxima-
tion of the log-marginalized likelihood called the free energy, which
can be used for comparing models [5]. Preliminary results using free
energy in a mini-batch setting was already presented by the authors
in [6], but model comparison and classification were provided by two
separate methods — mini-batch free energy and online EM respec-
tively. In this work, we present instead a method where both classi-
fier parameters estimation and model comparison are undertaken by
the same statistical model in a purely online fashion. Online exten-
sion of the Variational Bayes based on the stochastic approximation
of the free energy [7] is used for online model comparison, to take
into account possible changes in the acoustical environment. This
method also provides the online parameter estimation of the mixture
model, via posterior distributions of model parameters.

The organization of the paper is as follows. Section 2 introduces
an online Expectation Maximization (EM) algorithm for unsuper-
vised, online classification in the context of mixture models. Section
3 reviews the VB-EM framework for explicit computation of the free
energy. Based on the stated equivalence between the VB-EM pro-
cedure and direct minimization of the parametrized free energy, we
present the online extension of the VB-EM using a stochastic ap-
proximation of the parametrized free energy. Its application to the
VAD task as well as an evaluation on CENSREC-1-C, a framework
for noise robust VAD evaluation, is then presented in Section 4.

2. ONLINE EM FOR UNSUPERVISED CLASSIFICATION

When no training data is assumed, classification often relies on
thresholding the feature, where the threshold is adapted online (e.g.
from energy levels [3]). If we use a statistical framework instead,
presence/absence of speech can be regarded as the realization of
a binary random variable h, and the feature values as the realiza-
tions of a random variable (or vector for multi-dimensional features)
z. The model for the observations is thus a simple binary mixture
of Gaussian distributions, whose parameters can be estimated using
the Expectation-Maximization (EM) algorithm [8] applied to latent
models. As each iteration of the EM algorithm requires the whole
dataset, the conventional EM cannot be used when online classifica-
tion is needed. Online extensions have been proposed in the statisti-
cal literature to alleviate this problem. In this section, we will briefly
review the principles of this online extension, as well as its limita-
tions for VAD, which motivated the Bayesian extension presented in
the later sections.
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2.1. EM Algorithm

EM algorithm is a widely used method to estimate parameters in
models where the Maximum Likelihood Estimation (MLE) would
be hard to compute explicitly. Given N IID observations = £
z1,...,znN, the log-likelihood L of a model parametrized by 6 is
defined as:

L(6) £ Inp(w;0) = > Inp(wn; 6) (1)

n=1

When the model contains latent (unobserved) data, maximizing L
is often intractable. The principle of EM applied to the MLE
framework is to build an auxiliary function () which is easier
to maximize than the observed log-likelihood L(#), while its max-
imization will give a local optimum of the observed log-likelihood.
In the conventional EM framework, () is defined as the expected
log-likelihood of the complete data (z, h), with latent data h 2

h1,...,hn, conditioned on the observation x only:
Qo,(0) = Ellnp(z,h;0)|z;0;] 2)
fiy1 = argmax Qo (6) )
0

Iteratively running Eq. (2) and (3) gives a sequence {6; } which con-
verges to a local maximum of L.

2.2. Online EM

If the complete data (x, ) follow a density in the (Natural) Expo-
nential Family' (EF, [9]):

lnp(x,h; 0) £ <S(£L’,h),0> + SO(xvh) - 1/1(9) (4)

where s, so and () are functions of appropriate dimension which
define the density and (., .) the scalar product, Egs. (2) and (3) may
be rewritten with the following concise form:

Oiv1 = f(5(x;0:)) ®)
with f defined as:

fs) = arg max [(s,0) —¥(0)]

and E(m; 0;) the averaged sufficient statistics under the parameter 6;

1 & 1 &
5@ 0:) = > S 0:) = i D Els(@n, hn)lza; 0] (6)
n=1 n=1

As updating 6,11 requires all the data (Eq. (6)), the EM algorithm
cannot be used for online unsupervised classification where the pa-
rameters need to be updated after each observation x,,. The online
extension of the EM algorithm as developed in [10], is based on the
formulation of the EM algorithm as in Eq. (5). Cappé et al. [10]
proposed the following online EM algorithm

n+1 = <§n + Yn+1 (E(wny en) - Sn) (7)
n+1 £ f(§n+1) (8)

where v, is a learning parameter. The iteration index ¢ is replaced
by the frame index n, and the parameter 6,, is updated after every

>

>

Lz is also said to follow a density in the Exponential Hidden Family
(EHF)
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observation x,,. As this online derivation is close to the original EM
formulation, it can be easily implemented for models such as Gaus-
sian Mixture Models (GMM) as the explicit formula for the average
sufficient statistics s is exactly the same as in the case of GMM es-
timation with the conventional EM algorithm. The main constraint
of the method is making the relationship between sufficient statistics
and @ explicit (i.e. f must be explicited) [10].

2.3. Application to Voice Activity Detection and Limitations

When online EM is applied directly to the estimation of a binary
mixture of Gaussian distributions, it can be used for concurrent
noise/speech level estimation, where each class (speech and noise)
is assumed to be normally distributed, and where each Gaussian pa-
rameters are updated frame per frame. When the components of the
mixture are mostly overlapping, the mixture does not properly rep-
resent a two-class model, and the decision value obtained from the
Bayesian classifier is not reliable. This may be the case at the begin-
ning of the online EM algorithm (where little data has been seen by
the classifier), or when no speech has been present for a significant
amount of time. The main contribution of this work is to use on-
line model comparison in the Bayesian framework to alleviate those
issues.

3. VARIATIONAL BAYES APPROACH

3.1. Using Free Energy for Model Comparison

For a latent model p(z, h|#, m) of parameter @ and structure m>,
Bayesian estimators are built from the posterior over hidden and pa-
rameter variables:

p(, hl, m)po(0]m)
p(x|m)

where po(0|m) is the prior, and p(x|m) only depends on the model
and the observations:

pmm:/MMMMMMM%M (10)

p(0, hlz,m) =

©

Although the quantity p(x|m) can be ignored when computing the
posterior (since it depends neither on 6 or h), it is useful when con-
sidering model comparison based on the following:

p(ml|x) = p(z|m)po(m)/p(x) a1

To make computation tractable, we use the Variational Bayes frame-
work (VB [5]) which restricts the posterior ¢(#, h) £ p(6, h|z,m)
to a simpler functional form, making integrals involved in Bayesian
computation tractable for a large class of models. Gaussian mixtures
are a particular case. For any function ¢(h, 6) over the hidden data
h and parameter 0, the Kullback-Leibler divergence between ¢(h, 0)
and the true posterior ¢(h, ) can be computed using Eq. (9) and
(10) as follows:

da) 2 [a _4(0,h)
MW@*tﬁ@W%&WMWM
£ Inp(zlm) — Fn(g) >0 (12)

where the Free energy F, is defined as:

NN ~ p(xfh‘07m)p0(9‘m)
Fu(@) 2 [ (0.1 1n PR

2For a mixture of Gaussians, 1m may represent the number of Gaussians
in the task addressed in this work.

dfdh  (13)




and the inequality (12) is derived from the Kullback-Leibler diver-
gence definition, and a consequence of the Jensen’s inequality ap-
plied to the concave function (In). Inequality (12) shows that F,, is
a lower bound of the log-marginalized likelihood for any ¢. Thus,
maximizing the negative free energy —F),, with respect to the ap-
proximate distributions ¢ will give an approximation of the log-
marginalized likelihood p(xz|m). As Bayesian model comparison
is based on evaluating the log-marginalized likelihood for different
models, I}, may be used in place of the log-marginalized likeli-
hood for model comparison if it is a good approximate of the log-
marginalized likelihood.

3.2. Variational Bayes EM (VB-EM)

The maximization of —F}, is done using the tools of calculus of
variations, which is a branch of mathematics concerned with func-
tionals, that is functions of functions. For practical computation, the
VB method is often restricted to densities within the EHF, as in Sec-
tion 2, that is p(x, h|0, m) will be given by Eq. (4). In a Bayesian
context, the EHF also has the advantage to always have at least one
prior conjugate to the likelihood, that is the resulting posterior has
the same functional form as the prior [9]:

lnpo(e‘T(),ao) X <970(()> — To’g[)(e) (14)
where 79, ag are the hyper-parameters. The scalar 7y can be inter-
preted as the pseudo count of the prior, e.g. for N observations, a
weak prior will be such as the ratio 79 /(70 + V) < 1. The vector o
has the same dimension as 6, and is the prior on the possible values
for 6.

The Variational Bayes framework optimizes the negative free
energy with respect to ¢, under the assumption G(0,h) =
qo(0)gn(h) [5]. In this context, maximization of —F}, is reduced
to a set of two coupled equations involving gy and gp,. This is solved
iteratively, to give the VB-EM algorithm. At iteration 4:

a1 0) = pOTii1, ig1) 15)
N
@ () = ] p(halea; ) (16)
n=1
with:
Oip1 =0(7i, i) = /9Q§(9;Ti7ai)d0 17)
Tit1 = To+ N (18)
N —_—
a1 = a0ty 8@afi)  (19)
n=1

qn and gp are used for parameter estimation, as well as for model

comparison, by replacing (0, h) by ¢, and go in the free energy
definition (Eq. (13)). Updates of posteriors ¢, and gg are re-
duced to updates of averaged parameter ;1 and hyper-parameters
(Tit1, @i+1), and they keep the same parametrized forms for each
iteration [5].

3.3. Online VB-EM

As in the conventional EM algorithm, the VB-EM algorithm requires
the whole dataset at once. An online extension of VB-EM similar
to the online extension of the EM algorithm reviewed in Section 2
may be derived, once the VB-EM algorithm is formulated in a form

similar to Eq. (5). Here, instead of an explicit relation on the estima-
tion of parameter € between successive iterations (Egs. (7)-(8)), we
require a similar relationship on the hyper-parameters (75, ;). As
explicitly formulated in [7], one iteration of the VB-EM procedure
can be rewritten as:

(Tit1, tig1) = 9(3(95;5(%‘,041')) (20)

where g is linked to a parametrized free energy F},, defined as the
free energy F, where G(0, h) is replaced by ¢n and g as defined in
Egs. (15) and (16):

9(5(z;0(i, ) £ argmax FL (T, o, 74, a;) 21
The online extension of the VB method is thus in principle similar
to the online extension of the EM applied to the MLE. For every ob-
servation x,, a stochastic approximation F,’Z,m of FP is considered,
and a series of approximated hyper-parameters { (75, &n)} is recur-
sively estimated to maximize F%,. At sample n + 1, this is written
as [7]:

8n A+ o1 [8(@nt1;0(Fn, n) — 80 (22)
9(8n+1) (23)

& L
Sn+1 —

[I>

(f-n+1 5 OAC'!L«!»I)

Those online updates of hyper-parameters are used to compute Fr’f,m
itself, thus both model comparison and model parameters are com-
puted in an online manner.

4. APPLICATION TO VOICE ACTIVITY DETECTION
AND EVALUATION

The online VB-EM is applied to VAD in a straightforward manner;
using a one- dimension feature (enhanced High Order Statistics [6]),
we conduct the online VB-EM for models with one and two com-
ponents at the same time as well as estimating I}, ,,,, (online free

energy for single-Gaussian mixture) and Ff,,’,mz (online free energy
for two-Gaussian mixture). The model with one component corre-
sponds to the noise-only case, and the model with two components
the noise-and-speech case. Both models are estimated concurrently,
and we update the classifier assuming a model with two components,
but when F}{,ml > FS,MQ, we assume the signal contains only noise
for the corresponding samples, and vice versa. This is summarized
in Figure 1. Since online VB-EM and free energy is computed on
simple models, the computational cost is minimal (Real Time Factor
of 0.03 in our implementation on a standard workstation).

We evaluate this method on the CENSREC-1-C database [11],
which consists of noisy continuous digit utterances in Japanese. The
recordings were done in two kinds of noisy environments (street and
restaurant), with low and high SNRs. We use the remote data (where
the speaker is approximately 50 cm away from the microphone).
The results are given by frame error rates: False Alarm Rate (FAR:
ratio of noise frames detected as speech divided by the number of
noise frames) and False Rejection Rate (FRR: ratio of speech frames
detected as noise divided by the number of speech frames). The
results are compared against the statistical VAD described in [12].
The method is based on spectral features and HMM-based hangover;
the HMM emission probabilities are computed from a-priori and a-
posteriori noise statistics, which are estimated from the beginning
of the signal, and updated on a frame-per-frame basis respectively.
For each method, the decision level was set up so that FAR and FRR
were approximately equal (equal error rates) on the whole dataset.
The method is also compared against a VAD method based on online
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Fig. 1. Proposed scheme based on online VB-EM

Table 1. Results of VAD per SNR.

Proposed method High SNR | Low SNR | Overall
FAR 172 % 214 % 192 %
FRR 8.6 % 29.6 % 18.9 %
Without model comparison | High SNR | Low SNR | Overall
FAR 15.2 % 26.8 % 21.0 %
FRR 13.1 % 309 % 22.0 %
Statistical VAD High SNR | Low SNR | Overall
FAR 19.9 % 31.1 % 255 %
FRR 16.0 % 333 % 24.7 %
Table 2. Results of VAD per noise type.
Proposed method | Restaurant | Street | Average
FAR 24.6 % 149% | 19.7 %
FRR 17.6 % 206 % | 19.1 %
Statistical VAD Restaurant | Street | Average
FAR 49.1 % 1.6 % 254 %
FRR 143 % 338% | 241 %

VB-EM, but without using online free energy: in that case, we as-
sumed a two-Gaussian model throughout the whole signal, and used
the decision level given by the corresponding Bayesian classifier.

The results in Table 1 show that the proposed method (top) out-
performed the statistical VAD (bottom). Both FAR and FRR are
reduced in both low and high SNR cases. Compared with the on-
line VB-EM without model comparison (middle), although FAR in
high SNR case was degraded, the other cases were improved, and
the effect of incorporating online free energy is confirmed. In Table
2, we compare the proposed method and the statistical VAD method
per noise type. Although the proposed method is worse than the
statistical VAD in some cases, it is better on average and is also
more consistent across noise types. The proposed method is also
less biased toward street noise compared to the statistical VAD, as
the noise-specific error rates are closer to the average error rates over
both noise types. The result suggests that the proposed online VAD
method can operate in different noise conditions. We thus confirm
the effectiveness of the proposed method.

5. CONCLUSION

A new scheme to improve the robustness of online classification for
VAD has been proposed. It uses online free energy, an online ap-
proximation of log-evidence in the Variational Bayes framework, to
assess the classifier reliability online. The method is intended to
replace the state machines with a statistical solution, and may be
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applied to other problems where different mixture models must be
compared online, such as speaker diarization. This will be investi-
gated in future works.

(1]

2

—

3

—_—

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

6. REFERENCES

L. Rabiner and B. H. Juang, Fundamentals of Speech Recog-
nition, Prentice Hall, 1993.

B. Kingsbury, G. Saon, L. Mangu, M. Padmanabhan, and
R. Sarikaya, ‘“Robust speech recognition in noisy environ-
ments: The 2001 IBM Spine evaluation system,” in /CASSP,
2002.

I. Shafran and R. Rose, “Robust speech detection and segmen-
tation for real-time ASR applications,” in Proc. ICASSP, 2003,
pp. 432-435.

K. Li, M. S. S. Swamy, and M. O. Ahmad, “An improved
voice activity detection using high order statistics,” Speech and
Audio Processing, IEEE Trans. on, vol. 13, no. 5, pp. 965-974,
September 2005.

M. J. Beal and Z. Ghahramani, “The variational Bayesian
EM algorithm for incomplete data: with application to scor-
ing graphical model structures,” Bayesian Statistics, vol. 7, pp.
453-464, 2002.

D. Cournapeau and T. Kawahara, “Using variational bayes
free energy for unsupervised voice activity detection,” in Proc.
ICASSP, 2008.

M. Sato, “Online model selection based on the variational
Bayes,” Neural Computation, vol. 13, pp. 1649-1681, 2001.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum like-
lihood from incomplete data via the EM algorithm,” Journal
of the Royal Statistical Society: Series B (Statistical Method-
ology), vol. 39, no. 1, pp. 1-38, 1977.

D. R. Cox, Principles of Statistical Inference, Cambridge uni-
versity press, 2006.

O. Cappé and E. Moulines, “Online EM algorithm for latent
data models,” Journal of the Royal Statistical Society: Series
B (Statistical Methodology), vol. 73, no. 3, pp. 593-613, 2009.

N. K. et al., “CENSREC-1-C: Development of evaluation
framework for voice activity detection under noisy environ-
ment (in Japanese),” Tech. Rep., IPSJ SIG SLP, 2006.

J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based
voice activity detection,” IEEE Signal Process. Lett, vol. 6, pp.
1-3, 1999.



