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Abstract— This paper presents an online real-time method
that enhances human voices included in severely noisy audio
signals captured by microphones of a hose-shaped rescue robot.
To help a remote operator of such a robot pick up a weak
voice of a human buried under rubble, it is crucial to suppress
the loud ego-noise caused by the movements of the robot in
real time. We tackle this task by using online robust principal
component analysis (ORPCA) for decomposing the spectrogram
of an observed noisy signal into the sum of low-rank and sparse
spectrograms that are expected to correspond to periodic ego-
noise and human voices. Using a microphone array distributed
on the long body of a hose-shaped robot, ego-noise suppression
can be further improved by combining the results of ORPCA
applied to the observed signal captured by each microphone.
Experiments using a 3-m hose-shaped rescue robot with eight
microphones show that the proposed method improves the per-
formance of conventional ego-noise suppression using only one
microphone by 7.4 dB in SDR and 17.2 in SIR.

I. INTRODUCTION

Hose-shaped rescue robots have been developed for gath-
ering information in narrow spaces under collapsed buildings
where humans or animals cannot go [1]–[3]. They have thin,
long, and flexible bodies, and self-locomotion mechanisms.
The Active Hose-II robot [1], for example, has small pow-
ered wheels enabling it to move forward, and the Active
Scope Camera robot [2], [3] can move forward by vibrating
cilia covering its body. In 2008 the Active Scope Camera
robot was used in an actual search-and-rescue mission in
Jacksonville, Florida, USA [4].

To avoid failing to hear the voice of a human at an unseen
and distant place, real-time ego-noise suppression is crucial
for a hose-shaped rescue robot. It should be noted that the
rescue activity is a race against time. Although hose-shaped
rescue robots are asked to keep moving for searching a wide
area in a limited time, conventional robots need to stop their
actuators and keep silent for hearing the voice of a human.
This strategy, however, is inefficient and often misses a voice
occurring when a robot is moving. Since the ego-noise of a
robot changes dynamically according to the movements of
wheels or vibrators and friction between the robot body and
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Fig. 1. Prototype hose-shaped rescue robot with eight-channel microphone
array and driving mechanism.
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Fig. 2. Overview of proposed online ego-noise suppression system.

surrounding materials, it is difficult to use conventional ego-
noise suppression methods [5]–[8] that assume the noise to
be stable or learned in advance.

In a real rescue scenario, we need to deal with a severely-
low signal-to-noise ratio (SNR) condition because ego-noise
sounds generated from the body of a robot are much closer
to microphones than human voices. One possibility is to use
source separation methods based on microphone arrays [9],
[10] for emphasizing human voices. These methods, which
need the precise information of microphone positions, how-
ever, cannot be used because the shape of a hose-shaped
robot changes flexibly in narrow gaps and it is difficult to
know the positions of microphones on the robot [11], [12].
Although several methods independent of the microphone
positions called blind source separation [13], [14] are pro-
posed, these methods requires too much computational costs
to use in real time.

A promising approach to unsupervised and efficient ego-
noise suppression for a hose-shaped rescue robot is to use
robust principal component analysis (RPCA) [15] that was
originally proposed for decomposing an input matrix into
the sum of sparse and low-lank matrices. Applying RPCA to
an audio spectrogram, it can be decomposed into frequency
components that appear repeatedly (e.g., the ego-noise of a
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TABLE I
STRONG AND WEAK POINTS OF PROPOSED METHOD AND RELATED

WORK OF EGO-NOISE SUPPRESSION

Method Non-stable No prior learning Independent of
noise microphone positions

Ince et al. [5] ✓
Tezuka et al. [6] ✓ ✓
Cauchi et al. [7] ✓ ✓
Nakajima et al. [8] ✓ ✓
Okutani et al. [18] ✓ ✓
Proposed ✓ ✓ ✓

hose-shaped rescue robot) and other components that occur
infrequently (e.g., the voice of a human) without prior learn-
ing [16]. RPCA can also suppress periodic ego-noise caused
by wheels and vibrators because the noise spectrogram has
a low-rank structure. Furthermore, periodic environmental
noise (e.g,, noise derived from rescue helicopters and ve-
hicles) are expected to be suppressed.

This paper presents a novel statistical method that can
suppress the ego-noise of a hose-shaped rescue robot by
applying an online version of RPCA (ORPCA) [17] to a
microphone array distributed along the robot as shown in
Fig. 1. Our method assumes that a target voice is similarly
recorded by all microphones and the ego-noise is differently
recorded by each microphone. This enables us to suppress
the ego-noise in two steps: 1) suppress the ego-noise at each
microphone by using ORPCA, and 2) extract the components
common among the microphones by combining the results of
ORPCA (Fig. 2). The effectiveness of the proposed method
was evaluated using the prototype hose-shaped rescue robot
with an eight-channel microphone array.

II. RELATED WORK

This section reviews related work on ego-noise suppres-
sion. We first introduce the ego-noise suppression methods
for a single microphone and then review methods for a mi-
crophone array. The strong and weak points of each method
are summarized in Table I.

A. Noise Reduction for Single Microphone

Ince et al. [5] developed an ego-noise suppression method
for a single microphone using the sensor data of actuators.
This method uses a noise database that stores pairs of motor-
sensor values and corresponding ego-noise. The ego-noise is
estimated by searching a noise template from the database
with the sensor values. Although this method works well
when the sensor data and ego-noise have a correlation, its
performance is degraded by unknown noise sounds and un-
stable noise.

Tezuka et al. [6] and Cauchi et al. [7] estimated the ego-
noise using extensions of non-negative matrix factorization
(NMF). NMF decomposes the input matrix into basis and
activation matrices [19]. The basis matrix is a set of tem-
plate frequency components, and the activation matrix is the
coefficients of the bases at each time frame. Since the NMF-
based approach represents the noise spectrum with multiple
bases, these methods can maintain non-stable ego-noise. This
approach, however, needs to learn the basis of ego-noise in
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Fig. 3. Configuration of microphones on a hose-shaped rescue robot.

advance because it is difficult to distinguish the bases of
ego-noise and a target voice.

Nakajima et al. [8] developed a method for estimating
the stable noise without prior learning. This method, called
histogram-based recursive level estimation (HRLE), estimates
the noise using the cumulative histogram of the input power
spectrum. It therefore robustly estimates the stable noise even
when there is some sudden and large-power signal. HRLE is
implemented in an open source robot audition software called
HARK 1 [9]. Since HRLE estimates the noise using only the
histogram and ignores the error between the estimated noise
and current input, it fails to estimate non-stable noise.

B. Noise Reduction for Microphone Array

Okutani et al. [18] developed an ego-noise-robust sound
source localization method that uses a microphone array. It
is called multiple signal classification based on incremen-
tal generalized eigenvalue decomposition (iGEVD-MUSIC).
GEVD-MUSIC is an online sound source localization method
suppressing the ego-noise given as a noise correlation ma-
trix between the microphones [20]. iGEVD-MUSIC sequen-
tially predicts the current noise correlation matrix from the
previous input signal. Since the correlation matrix repre-
sents the relationship between microphones and noise source
positions, this method is robust against the stationarity of
the noise. Okutani et al. robustly estimated the position of
the target sound source with a microphone array equipped
on a multicopter even when it was flying. This method,
however, assumes that the positions of the microphones are
known in advance. There are also several methods that use
a microphone array equipped a rescue robot, they need the
microphone positions [21]–[23].

III. ONLINE EGO-NOISE SUPPRESSION

This section describes the proposed online ego-noise sup-
pression method that extracts the components common among
the microphones by combining the ORPCA results of the
microphones at each frequency bin.

A. Problem Statement

We assume a hose-shaped rescue robot that has micro-
phones distributed along its body as depicted in Fig. 3. The
microphones are given an index ranging from 1 at the hand
position to M at the tip of the robot. We define t as the time
frame index, F as the number of frequency bins, and f as
the frequency bin index. The other notations are summarized
in Table II.

The ego-noise suppression problem for a hose-shaped robot
is defined as follows:
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Fig. 4. Spectrograms of low-rank and sparse components extracted by
ORPCA. Input is the mixture of a human voice and a simple noise (pure
tones).

TABLE II
NOTATIONS OF MATHEMATICAL SYMBOLS

Symbol Meaning
M Number of microphones
F Number of frequency bins
m Microphone index (m = 1, · · · ,M )
f Frequency bin index
t Time frame index
k The number of basis for low-rank component
ymt ∈ RF Amplitude spectrum of input signal
st ∈ RF Amplitude spectrum of output signal
xmt ∈ RF Low-rank component (= Lmrmt)
emt ∈ RF Sparse component
rmt ∈ RK Coefficients corresponding to the basis of low-rank component
Lm ∈ RF×K Basis of low-rank components
wmt ∈ RF Normalization coefficient.�

�
�
�

Input: M -channel synchronized amplitude spectrums
y1t, · · · ,yMt ∈ RF

Output: Denoised amplitude spectrum st ∈ RF

The input amplitude spectrum is defined as the absolute val-
ues of the short-time Fourier transform (STFT) of recorded
signals. The time-domain signal of the output is obtained by
conducting the inverse STFT to the product of the output
amplitude spectrum st and the phase of the recorded signal.

B. Online RPCA

The proposed method uses an online extension of batch
RPCA (ORPCA) [17]. The input signal of each channel
ymt is decomposed to low-rank component xmt and sparse
component emt by conducting ORPCA (Fig. 4):

ymt = xmt + emt. (1)

The ego-noise that periodically changes is assigned to the
low-rank component, and the voice and other sparse noise
are assigned to the sparse component [16].

To explain ORPCA which is independent of the micro-
phone index m, in the rest of this section we leave out it. Let
the F×t matrices of input spectra, low-rank components, and
sparse components be Y = [y1, · · · ,yt], X = [x1, · · · ,xt],
and E = [e1, · · · ,et]. The original batch RPCA decomposes
the input matrix into low-rank and sparse components by
solving following problem [15]:

min
X,E

{
1

2
∥Y −X−E∥2F + λ1∥X∥∗ + λ2∥E∥1

}
(2)

where ∥·∥F , ∥·∥∗, and ∥·∥1 represent the Frobenius, nuclear,
and L1 norms, respectively, and λ1 and λ2 represent the scale
parameters. Since this optimization is solved by the aug-
mented Lagrangian multiplier method and it performs SVD
which accesses all samples of the input, it was difficult to
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Fig. 5. Noise suppression using channel-wise ORPCA for multi-channel
signals.

solve the original RPCA problem in an online manner [15].
To solve the RPCA problem in an online manner, ORPCA

solves the following alternative problem [17].

min
L,R,E

{
1

2
∥Y − LRT −E∥2F +

λ1

2
(∥L∥2F + ∥R∥2F ) + λ2∥E∥1

}
(3)

where L ∈ RF×K and R ∈ Rt×K (K < F, t) represent the
bases of the low-rank components and the coefficients of the
bases (X = LRT ). As proved in [17], the local optima of
this problem are the global optimal solutions of the original
RPCA problem because the ∥X∥∗ is upper bounded by the
L and R [24]:

∥X∥∗ = ∥LRT ∥∗ = inf
L,R

{
1

2
∥L∥F +

1

2
∥R∥F

}
(4)

ORPCA solves the alternative RPCA problem (Eq. 3) by
minimizing the following cost function obtained by trans-
forming Eq. (3):

ft(L) =
1

t

t∑
t′=1

l(yt′ ,L) +
λ1

2t
∥L∥2F (5)

l(yt′ ,L)=min
rt′ ,et′

{
1

2
∥yt′−Lrt′−et′∥22+

λ1

2
∥rt′∥22+λ2∥et′∥1

}
(6)

where l(yt,L) represents the loss function for each sample.
The coefficients of the bases rt and sparse component et are
updated at each time frame by solving Eq. (6) with fixing
the basis of low-rank subspace L. The basis L, on the other
hand, is updated at each time frame by minimizing following
objective function gt(L) with fixing rt and et:

gt(L) =
1

t

t∑
t′=1

l′(yt′ ,L) +
λ1

2t
∥L∥2F (7)

l′(yt′ ,L) =
1

2
∥yt′ − Lrt′ − et′∥22 +

λ1

2
∥rt′∥22 + λ2∥e∥1 (8)

This function provides an upper bound for the cost function
ft(L). ORPCA solves Eqs. (6) and (7) using an off-the-
shelf solver and block-coordinate descent with warm restarts,
respectively [17].

C. Online Normalization of Input Signal
The ego-noise of our hose-shaped rescue robot has peaks

at low frequency bins. Since ORPCA estimates the low-
rank components with the same weight for the all frequency



Fig. 6. Prototype hose-shaped robot placed on the floor of an office room.

bins (Eq. 7), it over-fits to the peaks. We therefore apply a
normalization coefficient wmt = [wmt1, · · · , wmtF ]

T ∈ RF

to the input ymt:

y′mtf =
1

wmtf
ymtf . (9)

Since the peaks of the ego-noise changes depending on the
environment around the robot, the proposed method learns
the normalization coefficient in an online manner (Fig. 5).
We assume that the average ego-noise does not change fre-
quently and drastically, therefore the normalization coeffi-
cient is updated as follows:

wmt = αymt + (1− α)wm(t−1) (10)

where α is a learning weight parameter that is set to a small
value (e.g., 1.0× 10−2).

D. Combining Online RPCA Results at Microphones
The sparse components of the microphones emt are inte-

grated to extract the common component. Each sparse com-
ponent has large sparse noise measured when the correspond-
ing microphone touches on the environment, and small noise
which is suppression residuals of the ego-noise. To be robust
against these noise, the integration is conducted by taking a
median at each frequency bin as follows:

stf = Median(e1tf , · · · , eMtf ) for all f = 1, · · · , F (11)

where Median(· · · ) represents a median of the arguments.
The whole proposed noise suppression algorithm is sum-

marized as follows:

Algorithm 1 Proposed ego-noise suppression method
1: for t = 1, 2, 3 · · · do
2: Observe the audio input signal ymt(m = 1, · · · ,M)

3: for m = 1, · · · ,M do
4: Update normalizing coefficient wmt (Eq. (10))
5: Normalize input ymt to get y′

mt (Eq. (9))
6: Apply ORPCA to y′

mt to get sparse component e′
mt

7: Multiply e′
mt by the coefficient wmt to get emt

8: end for
9: for f = 1, · · · , F do

10: Take a median of [e1tf , · · · , eMtf ] to get output stf
11: end for
12: end for
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Fig. 7. Arrangement of a hose-shaped rescue robot and a loudspeaker. We
tested three loudspeaker positions: front, right, and back.

IV. EXPERIMENTAL EVALUATION

This section reports an experiment evaluating the proposed
method of ego-noise suppression using a prototype hose-
shaped rescue robot.

A. Experimental Conditions

Fig. 1 shows the prototype hose-shaped rescue robot used
in this experiment. The body was made with a corrugated
tube 38 mm in diameter and 3 m long. This robot had a self-
propelling mechanism the same as that of the Active Scope
Camera robot [3]. The entire surface of the robot was covered
by cilia and the robot moved forward by vibrating the cilia.
This robot had M = 8 microphones positioned on its body at
a regular interval of 40 cm. The body was rotated 90 degrees
after each of the microphones was installed with in order to
avoid having all microphones obstructed by the ground.

We recorded the ego-noise and target voice separately,
and then mixed them with varying SNR from −25 dB to
+5 dB. This experiment was conducted in an experimental
room with a reverberation time (RT60) of 740 ms (Fig. 6).
The ego-noise was recorded for 60 seconds sliding the robot
left and right by the vibrators and a hand. The arrangement
of the robot and the loudspeaker from which the target voice
emerged is shown in Fig. 7. We tested three positions of the
loudspeaker: front, right, and back. A low-noise target voice
signal was generated by convoluting the clean male voice
recorded in an anechoic chamber and the impulse response
recorded with the loudspeaker. These synchronized eight-
channel acoustic signals were sampled at 16 kHz and 16 bits
using HARK [9].

We compared following three methods:
1) Multi-ORPCA: the proposed method using all the eight

microphones.
2) Single-ORPCA: ORPCA using only the 8th (tip) micro-

phone.
3) Single-HRLE: HRLE using only the 8th microphone.
HRLE is one of the conventional methods that solve the
same noise suppression problem as ORPCA. The parameters
of the proposed method were decided experimentally, and
those of HRLE were set to the default values of the HARK
implementation.

We implemented the proposed method as a HARK module
by using C++ and a linear algebra library called Eigen3.
The estimation was conducted with a standard desktop com-
puter with an Intel Core i7–4790 CPU (4-core, 3.6 GHz)
and 8.0 GB of memory. The elapsed time for the proposed
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(c) Loudspeaker position: Back

Fig. 8. SDRs of input audio signal at 8th (tip) microphone and signals
denoised by Single-HRLE, Single-ORPCA, and Multi-ORPCA.
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(c) Loudspeaker position: Back

Fig. 9. SIRs of input audio signal at 8th (tip) microphone and signals
denoised by Single-HRLE, Single-ORPCA, and Multi-ORPCA.

method with an 8-ch input signal was 20.0 s. This value was
small enough compared with the whole signal length of the
input (60.0 s) that our method could work in real time.

The ego-noise suppression performance was evaluated us-
ing signal-to-distortion ratio (SDR) and signal-to-interference
ratio (SIR) [25]. SDR measures the overall quality of the re-
trieved noise-suppressed signal, and SIR measures how much
the interference due to ego-noise is suppressed. They were
measured using a Python toolkit called MIR-EVAL [26].

B. Experimental Results

As shown in Fig. 8-(a), when the loudspeaker was in
front of the robot, the SDR of the proposed method was
higher than that of the other methods at the SNR conditions
between −20 dB and −5 dB. Moreover, as shown in Figs. 8-
(b) and 8-(c), when the loudspeaker was to the right of the
robot or behind the robot, the SDR of the proposed method
was higher than that of the other methods at all the SNR
conditions −5 dB or less. The SIR of the proposed method
was improved more than 2.9 dB compared with that of the
other methods in the all conditions.

SIR measures how much the ego-noise is suppressed. As
shown in Figs. 10 and 11, the suppressed spectrogram of the
proposed method had lower noise than those of the others.
The ego-noise changed with a 30-Hz frequency which was
shown as vertical stripe patterns in Fig. 10-(a). The result of
Single-HRLE remains the fluctuation residuals of the ego-
noise as vertical stripe patterns (Fig. 10-(d)), whereas the
result of the proposed method and Single-ORPCA (Figs. 10-
(b) and (c)) were suppressed.

When the loudspeaker was in front of the robot, the SDRs
and SIRs for the proposed method were not as good as they
were when it was in the other two positions. This shows the
suppression performance depends on the relative positions of
the microphones and the target sound source. This is because
the proposed method integrates all microphones with the
same weights, whereas the power of the target sound was
different at each microphone. One way to overcome this
problem is to integrate the microphones by weighting them
with the estimated SNR of the target voice.

V. CONCLUSION

This paper presented an online real-time method that sup-
presses the ego-noise of a hose-shaped rescue robot. The pro-
posed method suppresses the ego-noise at each microphone
by using ORPCA, and extracts the components common
among the microphones by combining the ORPCA results.
The experiments using a 3-m hose-shaped rescue robot with
an eight-channel microphone array shows that the proposed
method improves the performance of conventional ego-noise
suppression using only one microphone by 7.4 dB in SDR
and 17.2 in SIR. The results also show that the suppression
performance is often degraded, depending on the relative
positions of the microphones and the target sound source.

To improve the proposed method, we plan to develop a
microphone array integration method that weights the mi-
crophones with the estimated SNR of the target voice. Since
the proposed method suppresses the noise that frequently ap-
pears, it can suppress not only the ego-noise of a hose-shaped
rescue robot but also other environmental noise and the ego-
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(a) Signal measured at 8th (tip) microphone
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(b) Signal denoised by Multi-ORPCA (Proposed)
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(d) Signal denoised by Single-HRLE

Fig. 10. Examples of spectrograms obtained when the loudspeaker is to the right of the robot and SNR is set to −5 dB.
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Fig. 11. Spectrogram of target voice for the condition of Fig. 10

noise of other noisy rescue robots without prior learning.
Our future work includes investigating the method’s perfor-
mance with other rescue robots, such as multicopters [18].
Furthermore, to evaluate the effectiveness in the search-and-
rescue tasks, we will conduct more practical experiments in
simulated disaster sites.
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