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Abstract-This paper presents an online method that can accu­
rately estimate the time-varying posture of a moving hose-shaped 
robot having multiple microphones and loudspeakers. Sound­
based posture estimation has been considered to be promising 
for circumventing the cumulative error problem of conventional 
integral-type methods using differential information obtained by 
inertial sensors. Our robot emits a reference signal from a loud­
speaker one by one and estimates its posture by measuring the 
time differences of arrival (TDOAs) at the microphones. To accu­
rately estimate the posture of the robot (the relative positions of 
the microphones and loudspeakers) even when the robot moves, 
we propose a novel state-space model that represents the dynam­
ics of not only the posture itself but also its change rate in the 
state space. This model is used for predicting the current posture 
by using an unscented Kalman filter. The experiments using a 
3 m moving hose-shaped robot with eight microphones and seven 
loudspeakers showed that our method achieved less than 20 cm 
error at the tip position even after the robot moved over a long 
time, whereas the estimation error obtained by a conventional 
integral-type method increased monotonically over time. 

I. INTRODUCTION 

Hose-shaped robots [1]-[3] are one of the most useful types 
of rescue robots that can be used for probing buried victims 
in a disaster environment where humans or animals cannot 
work [4]-[7]. Those robots have thin and long bodies and can 
penetrate into narrow gaps in the rubble of collapsed buildings. 
A remote operator steers a hose-shaped robot to the target 
location by using its locomotion mechanism. Active Hose-II 
[1], for example, has small powered wheels to move forward. 
Active Scope Camera [2], [3] has a body covered with cilia and 
can move forward by vibrating the cilia. It was used for real 
search-and-rescue in Jacksonville, Florida, USA in 2008 [8]. 

To control a hose-shaped robot that flexibly changes its 
posture (shape) over time in an unseen environment, it is neces­
sary to estimate the time-varying posture of the moving robot. 
Ishikura et al. [9], for example, proposed an inertial-sensor­
based method that can estimate the posture by integrating the 
acceleration and angular-velocity information obtained from 
accelerometers and gyro sensors installed on the robot. Such 
integral-type methods based on the posture change rate, how­
ever, cannot work over a long time because the estimation error 
is gradually accumulated. Although non-integral-type methods 
based on information obtained by GPS and strain gauges can 
accurately track the posture independently of the past history 
[10]-[12], those methods can neither be used indoors nor be 
used for a robot with a long body [13]. 
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Fig. 1. A prototype hose-shaped robot with a driving mechanism. Micro­
phones and loudspeakers are used to estimate their relative positions. 
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Fig. 2. Microphone and loudspeaker on the prototype hose-shaped robot. 

Sound-based posture estimation has recently been consid­
ered to be a promising non-integral-type approach. A hose­
shaped robot having multiple microphones and loudspeakers, 
for example, has been developed [14]. This robot emits a ref­
erence signal from a loudspeaker one by one and estimates its 
posture by measuring the time differences of arrival (TDOAs) 
at the microphones. Since those TDOAs depend only on the 
current relative positions of the microphones and loudspeakers, 
the cumulative error problem can be avoided. The sound-based 
approach can be used in a closed space allowing sound propa­
gation, whereas the accurate GPS-based approach can be used 
only outdoors for receiving signals from the satellites. This 
indicates that sound-based posture estimation is complemen­
tary to inertial-sensor-based and GPS-based posture estimation. 
The robot audition mechanism is useful for sound source lo­
calization and separation [15], [16] (e. g. , search for victims by 
voice) as well as posture estimation. 

A major requirement of posture estimation is that the robot 
posture should be continuously presented to an operator in real 
time. Ono et al. [17] for example, proposed a method based on 
auxiliary functions for performing simultaneous localization of 
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Fig. 3. Microphone and loudspeaker arrangements. 

asynchronous microphones and multiple sound sources. Since 
this method is intended for offline use and assumes that the 
sound sources and microphones are stable, it cannot be used 
for posture estimation of the moving robot. Miura et al. [18] 
proposed a sound-based method of simultaneous localization 
and mapping (SLAM). Although this method can be used in an 
online manner, it assumes that there is a single moving sound 
source with known dynamics. 

In this paper we propose a new sound-based online method 
that can accurately estimate the time-varying posture of a mov­
ing hose-shaped robot. To achieve this, we formulate a state­
space model that represents the dynamics of not only the pos­
ture itself but also its change rate in the state space. Our model 
has two distinct characteristics. First, to use our method in an 
online manner, the current posture of the robot is predicted 
from the previous posture by using an unscented Kalman filter 
(UKF) [19]. Second, our model assumes that the relative po­
sitions of the microphones and loudspeakers can change over 
time under a constraint that the microphones and loudspeakers 
are serially linked in a specified order. The effectiveness of our 
proposed method was evaluated using a prototype hose-shaped 
robot with a driving mechanism, as shown in Fig. 1. 

The remainder of the paper is organized as follows. Section 
II presents the sound-based online posture estimation method. 
Section III shows and discusses the experimental results for a 
prototype hose-shaped robot. Finally, Section IV summarizes 
the key findings and mentions future work. 

II. SOUND-BASED ONLINE POSTURE ESTIMATION 

This section describes our proposed method of sound-based 
online posture estimation. The posture of a hose-shaped robot 
is estimated according to the following three steps: 1) generate 
a reference signal from each loudspeaker, one by one, 2) esti­
mate the TDOAs of the reference signal at the microphones, 
and 3) estimate the relative positions of the microphone and 
loudspeakers from the estimated TDOAs. 

A. Problem Statement 

A hose-shaped robot we use has microphones and loud­
speakers installed alternately at a regular interval t, as shown 
in Fig. 3. We denote the microphones and loudspeakers as 
micm (m = 1,· .. , M) and srcn (n = 1,·· . , N), respectively, 
where N = M -1. We define k as the measurement index and 
the microphone and loudspeaker positions as X�i% and x�%, 
respectively. In this paper, we assume that the llucrophOlles 
and loudspeakers are on a two-dimensional surface. The other 
notations are sUlmnarized in Table I. 

The problem statement for a sound-based posture estima­
tion is defined as follows: 
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Fig. 4. Serially-connected link model of robot posture. 

TABLE I. DEFINITION OF MATHEMATICAL SYMBOLS 
Symbol 

M 
N 
C 
t 
k 
w 
micm 
srcn x;�� 
Xn , k 

ek 
C;k 
Ba,k 
h,k 
C:k 
Yk 
T�1,m2,k 

Input: 

Meaning 

Number of microphones 
Number of loudspeakers (N = M - 1) 
Speed of sound 
Time 
Measurement index 
Frequency 
i-th microphone (1 ::; m ::; M) 
j-th loudspeaker (1 ::; n ::; N) 
Position of mic= E 1R2 
Position of SfCn E IR 2 
Input audio recording at k-th measurement E IRJVJ 
Reference signal E IR 
State variable at k-th measurement E 1R4\ JVJ +") 6 
Posture at k-th measurement E 1R2(M+N)-3 
Joint angle (Ba,k E IR, 1 ::; a ::; N + M - 2) 
Link length (h,k E IR, 1 ::; b::; M + N - 1) 
Posture change rate at k-th measurement E 1R2(M+N)-3 
k-th measurement vector E IR M -1 
TDOA between mic=l and mic=2 
for a reference signal generated by srCn E IR 

Synchronized M-channel audio signals Zk (t) obtained by 
recording a reference signal s (t) with M microphones. 
Output: 
The relative positions of each microphone xmic and each m,k 
loudspeaker x�,%. 

The input data are used for calculating the TDOA of the ref­
erence signal at each microphone. Since the TDOA represents 
the relationship between the microphone and loudspeaker, the 
output is the relative positions of the microphones and loud­
speakers. We therefore assume that x;n�c and X�f% are known 
without loss of generality. 

' , 

B. State-Space Model of Robot Posture 

Our method estimates the posture of a moving robot by 
using the TDOAs calculated from the input data. More specif­
ically, we formulate a nonlinear state-space model that asso­
ciates a state space representing the posture dynamics with an 
observation space representing the TDOA. The point estimate 
of the current posture is obtained by using an UKF. 

The robot posture is modeled as a serially-connected link 
model, as shown in Fig. 4. The posture at the k-th measure­
ment, (ko is defined as 

(k = [B1,k,'" ,BM+N-2,k,h,k,'" ,lM+N-1,k], (1) 

where Ba,k (1 ::; a ::; M + N - 2) is a link angle and lb,k 
(1 ::; b ::; M + N -1) is a link length. To deal with a moving 
robot, we estimate not only posture (k but also its change rate, 
(k. The state-space vector ek is given by 

ek = [ (k, (k]T E JRL, (2) 
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where L = 4M + 4N -6 is the dimension of the state space. 

The relative positions of the microphones and loudspeakers 
on the robot, X:i� and x':;� , can be calculated recursively 

from the known positions x';n�c and x�r%. Suppose that x; k 
is the i-th member of [xmic :rsrc ... �mic xsrc xmiC

'] . . . . l,k ' l,k' ' M-l,k' N,k' M,k' 
each posItion IS gIven by 

1) Measurement Model: A measurement model p(Yklek) 
is formulated using TDOA T;:;' m k (ek) between micm1 and 1, 2, 
micm2 for the reference signal generated from srcn as follows: 

p (Yklek) = N(YkIT(ek), Rk), (3) 

T(ek) = [T'::,l,k (ek) , ... ,T'::,n-l,k (ek), 
T'::,n+l,k (ek),'" ,T'::,M,k (ek) ]T (4) 

TDOA T;:;'1,m2,k is calculated by using the distances between 
the two microphone and the loudspeaker as follows: 

where C represents the speed of sound. We assume that C is 
340 mls in this paper. 

2) State Update Model: A state update model p (eklek-d 
is based on two concepts: a) posture dynamics and b) posture 
constraint. The posture dynamics q ( ek lek-J) represents how 
likely the previous posture (k-l is to change to the current 
posture (k with a change rate (k-l as follows: 

. . T q (eklek-l) = N(ekl [ (k-l + (k-l, (k-l] ,Qk), (6) 

where Qk E ]RLxL is the covariance matrix of the process 
noise. The posture constraint r (ek) , on the other hand, is mod­
eled as a Gaussian distribution: 

(7) 

where e E ]RL and P E ]RLxL are the mean and covariance 
matrix of the feasible posture. 

We integrate these two distributions for the state update 
model p ( ek lek-J) on the basis of the product of experts [20]: 

(8) 

where A = J q (eklek-dr(ek)dek is the normalization factor. 
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Fig. 6. Overview of TDOA estimation. 

3) Estimation Algorithm: The robot posture (k is estimated 
from Yl:k in an online manner by using an UKF [19] assuming 
that the posterior distribution of the state variable ek follows 
a Gaussian distribution. The UKF approximates the posterior 
distribution p(ekIYl:k) from the likelihood p (Yklek) and prior 
p (ekIYl:k-d using unscented transform. The prior distribution 
p (ekIYl:k-J) is given by J p (eklek-J)p(ek-lIYl:k-J)dek-l 
using unscented transform. 

In our state-space model, we can simplify the calculation 
of the prior distribution p (ekIYl:k-l). Since the q (eklek-d is 
a linear transformation of ek-l (Eq. 6) and the r (ek) is defined 
as a Gaussian distribution (Eq. 7), the state update model can 
be written as a linear model. We can therefore calculate the 
prior distribution p (ekIYl:k-d without unscented transform as 
follows: 

p(ekIYl:k-d = N(eklek, Pk-), (9) 

ek = Pk-( (pk)-lek-l + p-1e), (10) 

Pk- = ( (pk)-l + P -1)-I, (11) 
* T ' Pk = F Pk-IF + Pk, (12) 

where ek-l and Pk-l are the mean vector and covariance 
matrix of the last posterior distribution p (ek-lIYl:k-d. This 
calculation is recursively performed over time. 

C. Robust TDOA Estimation 

To make TDOA estimation robust against motor noise, we 
use a time stretched pulse (TSP) [21] as a reference signal 
(Fig. 5). A TSP has a high signal-to-noise ratio and can be sent 
with large energy from a loudspeaker. Therefore, the reference 
signal can be easily distinguished from the motor noise. A TSP 
signal with a length of W samples is defined in the frequency 
domain as follows: 

S( ) _ {eXp(j21fW2/W2) w - S(W-w) 
o ::; w ::; W /2 
W /2 ::; w ::; W ' (13) 

where S (w) is the frequency spectrum of the reference signal 
s(t) in the frequency domain and w indicates a frequency. The 
reference signal s (t) is obtained by the inverse discrete Fourier 
transform of S(w). 

As shown in Fig. 6, TDOA T;:;'1,m2,k is estimated from the 
recorded signal Zk (t) as follows: 
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Fig. 7. System architecture of prototype hose-shaped robot. 

1) Calculate the cross correlation coefficient Gm,k(T) 
between each recorded signal Zm,k(t) and the refer­
ence signal s(t) . 

2) Calculate the onset times of the input signals, tm1,k 
and tm2,k by detecting the first peak of the correlation 
coefficient Gm"k(T) and Gm2,k(T) , respectively. 

3) Calculate the TDOA T;;'"m2,k by subtracting tm1,k 
from tm2,k. 

The cross correlation is calculated using the generalized cross 
correlation method with phase transform (GCC-PHAT) [22]. 
This method is robust against reverberation [23] because in­
door environments, where the hose-shaped robots are to be 
used, occur reverberation. 

III. E VALUATION 

This section reports the experiments that were conducted 
for evaluating the proposed method of online posture estima­
tion using a prototype hose-shaped robot. 

A. Experimental Conditions 

Fig. 1 shows a prototype hose-shaped robot with a driving 
mechanism. The body was a corrugated tube with a diameter 
of 38 illin and a total length of 3 m. The driving mechanism 
was the same as that of a hose-shaped robot called tube-type 
Active Scope Camera [3]. More specifically, the whole surface 
of the robot was covered by cilia and the robot moved forward 
by vibrating the cilia using seven vibrating motors positioned 
at an interval of 40 cm. M = 8 microphones (Fig. 2(a)) and 
N = 7 loudspeakers (Fig. 2(b)) were positioned on the robot 
alternately, as shown in Fig. l. The distance between the mi­
crophones at both ends was 2.8 m. We used a multichannel AID 
converter with a sampling rate of 16 kHz and a quantization of 
16 bit (RASP-ZX manufactured by Systems In Frontier Corp). 
The system architecture of our robot is shown in Fig. 7. 

We compared our proposed method that can take into ac­
count the posture change rate with a conventional method that 
does not consider it. The initial shape of the robot was set 
to one of three postures: C-shape, S-shape, and straight. The 
experiment was conducted in an experimental room with a re­
verberation time (RT 60) of 800 ms (Fig. 8). The TSP reference 
signal had a length of 8192 samples (512 ms) at 16 kHz. The 
reference signal was recorded by the microphones using the 
HARK open source robot audition software [24]. To use UKF, 
we determined the initial state eo = [(0, Col in the following 
manner. The initial posture (0 was sampled from a Gaussian 
distribution whose mean corresponds to the correct posture and 

Fig. 8. Prototype hose·shaped robot placed on experimental room. 

standard deviation was 15°. The initial change rate Co was set 
to zero. The other parameters were determined experimentally. 

The estimation algorithm was implemented using Python 
without multiprocessing. A standard laptop computer with an 
Intel Core i7-3517U CPU (2 cores, l.9GHz) and 4.0GB of 
memory was used to estimate the TDOAs of the reference 
signal and the posture of the robot. The CPU time and elapsed 
time for 50 TDOA estimations (25.6 s) were 8.759 s and 8.843 s, 
respectively. Those for posture estimation were 2.679 s and 
2.697 s, respectively. Therefore, the total computation time for 
an input signal of 25.6 s was 11.456 s. 

We evaluated the estimation error at the tip position. More 
specifically, the estimation error was calculated by measuring 
the difference between the estimated and correct positions of 
the microphone mics that is the most distant from the reference 
points mici and srCI. The correct positions were captured 
using a motion capture system (OptiTrack manufactured by 
NaturalPoint Inc.). The average estimation error was calculated 
over 32 different initial states. 

B. Experimental Results 

When the initial posture was set to the C-shape or S-shape, 
as shown in Figs. 9(a), 9(b), lO(a), and lOeb), the estimation 
errors were decreased over time and, as shown in Figs. 11 and 
12, the estimated postures followed the moving robot postures 
accurately. Moreover, when the initial posture was set to the C­
shape, the baseline method failed to follow the moving posture 
and the estimation error increased after the 30-th measurement. 
On the other hand, the proposed method successfully tracked 
the moving posture in real time. 

The estimation errors, when the initial posture was set to 
the C-shape or S-shape, were almost under 0.2 m after the 40-
th measurement. Ishikura et al. [9] reported that their inertial­
sensor-based method achieved the estimation error about 0.2 
m. Our method attained the similar performance to that of the 
inertial-sensor-based method. 

When the initial posture was straight, as shown in Figs. 9(c) 
and 1 O( c), on the other hand, the estimation error was larger 
than those obtained in the cases of the other initial postures. 



Fig. 9. The estimation errors obtained by the proposed and baseline methods Fig. 10. The average estimation errors obtained by the proposed and baseline 
for a moving prototype hose-shaped robot. The red line represents the proposed methods for a moving prototype hose-shaped robot. The red line represents 
method, and the gray line represents the baseline method. The polyline and error the proposed method, and the gray line represents the baseline method. The 
bar indicate the mean and standard deviation, respectively. polyline and error bar indicate the mean and standard deviation, respectively. 

This is because of the mirror-symmetrical problem. Since the 
microphones and loudspeakers were installed on the robot in 
forming single row, we cannot distinguish between two pos­
tures which were mirror-symmetrical with respect to micl and 
srCl. As shown in Figs. 13 and 14, the mirror-symmetrical 
postures were estimated. 

A promising solution to this problem would be to use multi­
modal information, i.e., integrate various types of information 
obtained from microphones, accelerometers, and gyro sensors. 
If a robot has those modalities, mirror-symmetrical postures 
can be distinguished by considering the posture change history 
and the robot can work in a closed and narrow space in which 
some modalities do not work. The mirror-symmetrical ambi­
guity could be handled with an unscented particle filter [25] 
that can maintain multiple possibilities about the posture of 
the robot at the same time. 

IV. CONCLUSION 

This paper presented an online method that can accurately 
estimate the time-varying posture of a moving hose-shaped 
robot having multiple microphones and loudspeakers. The ex­
periments using a 3 m moving hose-shaped robot showed that 
our method successfully suppressed the estimation error under 
20 cm at the tip position even after the robot moved over a 
long time, whereas the estimation error obtained by a conven-

tional integral-type method increased monotonically over time. 
We found that our purely sound-based method often confuses 
mirror-symmetrical postures, depending on the initial value of 
the estimation. 

To solve the mirror-symmetrical problem and improve the 
accuracy of posture estimation in a wide variety of realistic 
environments and situations, we plan to equip the robot with 
accelerometers and gyro sensors. The probabilistic state-space 
modeling enables us to integrate various types of information 
obtained from multi-modal sensors in a principled way. To 
evaluate the effectiveness of the proposed robot from the view­
point of search-and-rescue, we plan to conduct more compre­
hensive experiments in a simulated disaster environment (e.g., 
narrow and closed space). 
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