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Abstract— 3D posture estimation for a hose-shaped robot is
critical in rescue activities due to complex physical environ-
ments. Conventional sound-based posture estimation assumes
rather flat physical environments and focuses only on 2D,
resulting in poor performance in real world environments
with rubble. This paper presents novel 3D posture estimation
by exploiting microphones and accelerometers. The idea of
our method is to compensate the lack of posture information
obtained by sound-based time-difference-of arrival (TDOA)
with the tilt information obtained from accelerometers. This
compensation is formulated as a nonlinear state-space model
and solved by the unscented Kalman filter. Experiments are
conducted by using a 3 m hose-shaped robot with eight units
of a microphone and an accelerometer and seven units of a
loudspeaker and a vibration motor deployed in a simple 3D
structure. Experimental results demonstrate that our method
reduces the errors of initial states to about 20 cm in the 3D
space. If the initial errors of initial states are less than 20 %,
our method can estimate the correct 3D posture in real-time.

I. INTRODUCTION

Hose-shaped rescue robots have been developed for prob-
ing spaces under collapsed buildings that humans or animals
cannot go into [1]–[3]. They are characterized by a thin, long
and flexible body, and have self-locomotion mechanisms for
penetrating into narrow spaces. The Active Hose-II robot [1],
for example, has small powered wheels that enable it to
move forward, and the Active Scope Camera robot [2],
[3] can move forward by vibrating cilia covering its body.
The second robot was used for an actual search-and-rescue
mission in Jacksonville, Florida, USA in 2008 [4].

Sensor systems on rescue robots including the hose-shaped
robots typically do not work well in the extreme environ-
ments where such robots are intended to be used [5]–[8].
The accuracy of the GPS, for example, is degraded because
the rubble in collapsed buildings blocks signals from the
satellites [5], and a video camera inserted into narrow gaps
often fails to capture the views there because the lighting
causes whiteout or blackout conditions [6]. To develop
robust sensor systems, it is thus essential to integrate various
modalities compensating each other’s weaknesses [9]–[12].
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Fig. 1. We aim to estimate the posture of a hose-shaped robot using
microphones, loudspeakers, and accelerometers installed on the robot.

To control the flexible body of a hose-shaped robot in an
unseen complex environment, it is crucial to robustly esti-
mate its 3D posture (shape). Although there are many posture
estimation methods using various types of sensors [13]–
[15], these methods face some problems in the disaster envi-
ronments. The performances of magnetometer-accelerometer
based method, for example, are degraded in the disaster
environments because magnetic fields are easily affected by
the steel frames of collapsed buildings [13]. Also proposed
was a sound-based posture estimation method that can be
used in a closed space allowing sound propagation among
microphones and loudspeakers installed on the robot [14].
Nevertheless, a sound-based method often fails to estimate
the robot posture accurately because the obstacles around the
robot block sound propagation.

In this paper, we present a microphone-accelerometer
based 3D posture estimation method for a hose-shaped
robot equipped with a set of microphones, loudspeakers, and
accelerometers (Fig. 1). The microphones and loudspeakers
allow to estimate their relative positions using the time
differences of arrival (TDOAs) of a reference signal emitted
from the loudspeakers, and the accelerometers are used for
estimating their tilts by measuring the acceleration of gravity.
Since the TDOA-based method is degraded in a rubble-
containing environment, we exclude TDOAs distorted by
rubble and fill up the lack of posture information with the
tilt information. To do this, we detect TDOAs of direct
sound by excluding outliers, and estimate the robot posture
based on a nonlinear state-space model integrating TDOA
and tilt information by using the unscented Kalman filter
(UKF) [16].
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II. RELATED WORK

This section reviews related work on posture estimation.
We first introduce existing methods for estimating the shape
of a flexible cable and then review methods for simultaneous
localization of microphones and sound sources.

A. Shape Estimation for Flexible Cables

Lee et al. [13] estimated the shape of a flexible sensor tube
by using a sensor network system based on several electronic
compass units including a 3-axis accelerometer and 3-axis
magnetometer. The robot shape is modeled as a kinematic
chain and is estimated by using orientation information
obtained by the compass units. Since the orientation of each
unit is determined in part from magnetometer information,
this method fails to estimate the posture when the magnetic
field is distorted.

Ishikura et al. [15] estimated the posture of an Active
Scope Camera robot, which is one kind of hose-shaped robot,
by using gyrometers. They formulated a flexible dynamics
model and estimated the posture using the UKF. Since
this method uses only proprioceptive sensors, the estima-
tion accuracy is not affected by disaster environments. The
estimation performance, however, is often degraded by the
vibration of the robot. They had also examined a vision-based
localization method that estimates the movement of a tip
camera by extracting the corresponding points in images [6].
This method, though, often fails to extract these points when
a tip light causes over-exposures. Both of these integral-type
methods suffer from the cumulative error problem.

B. Localization of Microphones and Loudspeakers

There are many non-integral-type sound-based methods
for estimating microphone and loudspeaker positions simul-
taneously [17]–[20]. Since recorded sound depends only
on the current relative positions of the microphones and
loudspeakers, the cumulative error problem can be avoided.

Ono et al. [17] defined a blind alignment problem in
which the positions of an asynchronous microphone array
and sound sources are estimated from the TDOAs between
the microphone channels. They solved this problem by using
an auxiliary function approach. Their method is designed for
offline use and is based on the assumption that the positions
of sound sources and microphones are stable.

Rather than using the TDOA-based approach, Chen et
al. [18] developed a method that localizes microphones and
sound sources simultaneously on the basis of the sound
source energy, which depends on the distance between the
sound source and the microphone. The microphone and
sound source positions estimated by this method are based on
a sound attenuation model. Since the method is based on the
sound energy, though, its performance is severely degraded
by external noise.

Miura et al. [19] developed an TDOA-based online simul-
taneous localization method using a moving sound source.
This method localizes microphones and a moving sound
source, and it detects the time delays between the channels
by using the EKF-SLAM framework developed to enable a
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Fig. 2. Modules with a microphone and accelerometer or a loudspeaker
and vibrator.

mobile robot to estimate its location and a map of the field
simultaneously. The microphone positions are regarded as the
map and the position of the moving sound source is modeled
as the self-location. This method estimates the positions of
microphones on a robot while a moving person is clapping
his hands.

A TDOA-based online method was proposed for esti-
mating the 2D posture of a hose-shaped robot that has
a set of microphones and loudspeakers installed on its
body [14], [20]. This method is based on a nonlinear state-
space model representing the dynamics of the robot posture
and can estimate the positions of the moving loudspeakers
and microphones, which represent the time-varying posture,
by using the UKF [20]. This method tackles the obstacle
problem (TDOAs distorted by rubble) by detecting outliers
among the estimated TDOAs and excluding them [14].
Since the number of TDOAs of direct sounds decreases in
narrow spaces, this method fails to estimate the robot posture
accurately in a rubble-containing environment.

III. MICROPHONE-ACCELEROMETER BASED
3D POSTURE ESTIMATION

In the proposed method of microphone-accelerometer
based 3D posture estimation, the posture of a hose-shaped
robot is estimated by repeating the following four steps:
1) generate a reference signal from each loudspeaker, one
by one, 2) estimate the reference signal’s TDOAs at the
microphones, 3) estimate the tilts at 3-axis accelerometers,
and 4) estimate the robot posture from the estimated TDOAs
and tilts by using the UKF.

A. Prototype Hose-shaped Robot

Fig. 1 shows a prototype hose-shaped robot used in this
study. The body is a corrugated tube with a diameter of
38 mm and a total length of 3 m. This robot has a self-
propelling mechanism the same as that of the hose-shaped
robot called the Active Scope Camera [3]. The entire surface
of the robot is covered by cilia and the robot moves forward
by vibrating the cilia.

This robot has two types of modules, one with a mi-
crophone (mic) and 3-axis accelerometer (acc) (Fig. 2(a))
and the other with a small loudspeaker (src) and vibration
motor (vib) (Fig. 2(b)). As shown in Fig. 3, M = 8 mic-acc
modules and N = 7 src-vib modules are positioned on the
robot at a regular interval l = 20 cm. The distance between
the modules at the ends is 2.8 m.
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Fig. 3. Arrangements of microphones, accelerometers, and loudspeakers.

B. Problem Specification

We denote the microphones, accelerometers, and loud-
speakers as micm, accm (m = 1, · · · ,M ), and srcn (n =
1, · · · , N ), respectively, where N =M − 1. We define k as
the measurement index and the mic-acc module and src-vib
module positions as um,k and vn,k, respectively.

The problem of the microphone-accelerometer based pos-
ture estimation is defined as follows:

Input: 1) TDOAs τnm1,m2,k
∈ R (m1,m2 ∈ Mk) when

srcn omits a reference signal, and 2) tilt angles at the
accelerometers ψ1,k, · · · , ψM,k ∈ R.
Output: The positions of each mic-acc module um,k ∈ R3

and each src-vib module vn,k ∈ R3.

where τnm1,m2,k
represents a TDOA between micm1 and

micm2 and Mk represents a set of indices for microphones
that record the direct sound of the reference signal. The
TDOAs τnm1,m2,k

and microphone indices Mk are estimated
from synchronized M -channel audio signals zk(t) ∈ RM
obtained by recording a reference signal s(t) ∈ R (Sec. III-
C.1). The tilts ψ1,k, · · · , ψM,k are estimated from M -channel
3-axis accelerometer measurements a1,k, · · · ,aM,k ∈ R3

(Sec. III-C.2). We assume the robot is stable when the
acceleration is measured because we estimate the tilts of the
modules from gravitational acceleration.

C. Feature Extraction

We estimate the robot posture by using TDOAs and tilts at
the mic-acc modules calculated from the M -ch audio signal
zk(t) and the accelerometer measurements a1,k, · · · ,aM,k.

1) TDOA Estimation: For robustness in rubble-containing
environments, we estimate the TDOAs and detect TDOAs of
direct sound by excluding outliers. Since the TDOA between
two adjacent microphones cannot be longer than the sound
propagation time for the interval length on the robot (2l) in
an open space, our method excludes the TDOA that does not
satisfy this theorem. We formulate the set of indices Mk for
microphones that record the direct sound of the reference
signal as follows:

Mk = {m|m satisfies valid(m)} (1)

valid(m) =


valid(m− 1) ∧ |τnm,m−1,k| < 2l

c if m > n

|τnn+1,n,k| < ϵ if m = n

valid(m+ 1) ∧ |τnm+1,m,k| < 2l
c if m < n

(2)

where c and ϵ represent the speed of sound in an open space
and a threshold parameter for regarding the TDOA τnn+1,n,k

as small enough, respectively.

GCC-
PHAT

Peak 
detection

True or 
False

Outlier 
detection

𝑧𝑧𝑚𝑚,𝑘𝑘 𝑡𝑡
(acoustic signal)

𝐺𝐺𝑚𝑚,𝑘𝑘(𝜏𝜏)
(correlation coefficient)

𝑡𝑡𝑚𝑚,𝑘𝑘
(onset time)

valid(𝑚𝑚)
(outlier or not)

(1) (2) (3)

Fig. 4. Onset estimation for estimating TDOA.

A TDOA τnm2,m1,k
between micm1 and micm2 when srcn

omits a reference signal is estimated from the difference of
onset times at the microphones tnm1,k

and tnm2,k
:

τnm2,m1,k = tnm2,k − tnm1,k. (3)
The onset time of the m-th microphone tnm,k is calculated

by detecting the first peak of a correlation coefficient between
the reference signal and recorded signal (Fig. 4). The corre-
lation coefficient is calculated based on GCC-PHAT [21],
which is robust against reverberation when the signal-to-
noise ratio (SNR) is high [22]. To obtain a high-SNR
reference signal from the environment noises, we use a time-
stretched pulse (TSP) [23] as a reference signal. The TSP is a
frequency-modulated sine wave that smoothly decreases the
instantaneous frequency from the Nyquist frequency to zero
Hz over time. As the frequency of a TSP is different every
time, the SNR of a TSP becomes high. This feature also
avoids spatial aliasing in the microphone array, and enables
us to playback the signal with a small loudspeaker which
has a limited frequency characteristics.

2) Tilt Estimation: We estimate the tilts at the accelerom-
eters by measuring the direction of gravitational acceleration.
The output of tilt estimation is a set of tilts ψm,k(m =
1, · · · ,M) at the accelerometers accm. The tilt ψm,k is
estimated from the accelerometer measurements am,k as
follows:

ψm,k = arctan
(
−axm,k

/√
(aym,k)

2 + (azm,k)
2
)

(4)

where axm,k, aym,k, and azm,k represent the elements of the
input acceleration am,k, respectively.

D. State-Space Model of Robot Posture

Our method estimates the 3D posture of a hose-shaped
robot by using TDOAs estimated using the microphones and
tilts estimated from the accelerometers. More specifically, we
formulate a state-space model that associates a state space
representing the 3D robot posture with an observation space
representing the TDOA and tilt of each mic-acc module
(Fig. 5). The current posture is estimated by using the UKF.

As shown in Fig. 6, The robot posture is modeled as a
serially-connected link model. A posture at the k-th mea-
surement, ξk, is defined as follows:
ξk = [θ1,k, · · · , θM+N−2,k,ϕ1,k, · · · , ϕM+N−1,k,

l1,k, · · · , lM+N−1,k]
T, (5)

where θi,k, ϕi,k, and li,k are a horizontal link angle, a vertical
link angle, and a link length, respectively.

The relative positions of the microphones and loudspeak-
ers on the robot, um,k and vn,k, are calculated recursively
from the first position u1,k. Suppose that x∗

i,k is the i-th
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Fig. 5. Graphical representation of the proposed state-space model.

member of [u1,k,v1,k, · · · ,uM−1,k,vN,k,uM,k]. Then each
position is given by

x∗
i,k = x∗

i−1,k + li−1,k

cos(ϕ∗i,k) cos(θ∗i,k)cos(ϕ∗i,k) sin(θ
∗
i,k)

sin(ϕ∗i,k)

 , (6)

ϕ∗i,k =

i−1∑
j=1

ϕj,k, θ∗i,k =

i−2∑
j=1

θj,k. (7)

1) State Update Model: The state update model
p(ξk|ξk−1) is based on two concepts: a) posture dynamics
and b) posture constraint. The posture dynamics q(ξk|ξk−1)
is represented as random walk:

q(ξk|ξk−1) = N (ξk|ξk−1,Qk), (8)

where Qk ∈ RL×L is the covariance matrix of the process
noise. The posture constraint r(ξk), on the other hand, is
modeled as a Gaussian distribution:

r(ξk) = N (ξk|ξ,P), (9)
where ξ ∈ RL and P ∈ RL×L are the mean and covariance
matrix of the feasible posture.

These two distributions are integrated for the state up-
date model p(ξk|ξk−1) on the basis of the product of
experts [24]:

p(ξk|ξk−1) =
1

A
q(ξk|ξk−1)r(ξk), (10)

where A =
∫
q(ξk|ξk−1)r(ξk)dξk is a normalization factor.

2) Measurement Model: The measurement model
p(τk,ψk|ξk) is formulated with two sub models: a)
a TDOA measurement model p(τk|ξk) and b) a tilt
measurement model p(ψk|ξk) as follows:

p(τk,ψk|ξk) = q(τk|ξk)r(ψk|ξk) (11)

The TDOA measurement model q(τk|ξk) is defined using
a set of TDOAs τnk

mk,nk,k
where the mk is the one of the

filtered microphone indices Mk:

q(τk|ξk) = N (τk|[τnk

m1,nk,k
(ξk)|m1 ∈ Mk]

T,Rτ
k), (12)

where Rτ
k represents the covariance matrix of the mea-

surement noise and TDOA τnm1,m2,k
(ξk) is calculated by

using the distances between the two microphones and the
loudspeaker as follows:

τnm1,m2,k(ξk) =
|um2,k − vn,k| − |um1,k − vn,k|

c
, (13)

��,�
��,�

��,�

��,�

��,�

����	�,�����	�,�

Microphone +

Accelerometer

Loudspeaker +

Vibration motor

Fig. 6. 3D serially-connected link model of robot posture.

where c represents the speed of sound.
The tilt measurement ψk is a set of tilts angles ψm,k at

mic-acc modules:

q(ψk|ξk) = N (ψk|[ψ1(ξk), · · · , ψM (ξk)]
T,Rψ

k ) (14)

where Rψ
k represents the covariance matrix of the measure-

ment noise and tilt ψm(ξk) is calculated by accumulating
the vertical link angles ϕa,k as follows:

ψm(ξk) =
1

2

2m−2∑
i=1

ϕi,k +
1

2

2m−1∑
i=1

ϕi,k (15)

IV. EVALUATION

This section reports an experiment evaluating the proposed
method of 3D posture estimation in rubble-containing envi-
ronments.

A. Experimental Settings

We compared the proposed method integrating micro-
phone and accelerometer information with a conventional
method estimating the posture by using only microphone
information. This experiment was conducted in an experi-
mental room where the reverberation time RT60 was 800 ms.
As shown in Fig. 7, we estimated the robot postures in the
following three conditions:
1) Open space: There was no rubble around the robot. The

robot curved three-dimensionally on a stepladder 140 cm
high.

2) Sticks: Six wooden sticks (91 cm × 9 cm × 4 cm) repre-
senting rubble were placed around the robot.

3) Sticks and plate: In another rubble-containing environ-
ment, the six wooden sticks and a wooden plate (91 cm
× 25 cm × 1.5 cm) were placed around the robot.

We used a TSP reference signal that had a length of 8,192
samples (512 ms) at 16 kHz, and recorded with a synchro-
nized A/D converter RASP-ZX (Systems In Frontier Corp.).
The initial state ξ0 = [θi,0, · · · , ϕi,0, · · · , li,0, · · · ]T of the
UKF was determined in the following manner. The initial
horizontal and vertical link angles θi,0 and ϕi,0 were sampled
from a Gaussian distribution whose mean corresponded to
the ground-truth posture and standard deviation was 6◦. The
link lengths li,0 were set to 0.2 m which was the distance
between mic-acc and src-vib modules on the robot. The
threshold of the TDOA estimation ϵ was set to 0.04/340 sec.
The other parameters were determined experimentally.
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Fig. 7. Three conditions for experimental evaluation. Ground-truth postures were measured using a motion capture system.

We implemented the proposed method by using Python
without multiprocessing. The estimation was conducted with
a standard laptop computer with an Intel Core i7–3517U
CPU (2-core, 1.9 GHz) and 4.0 GB of memory. The CPU
time and elapsed time for the whole estimation algorithm
with 50 measurements were 8.561 s and 9.129 s, respectively.
These values were small enough compared with the whole
signal length of the reference signals (25.6 s) that our method
could work in real time.

We evaluated the tip position error and average estimation
error. The tip position error was the distance between the
ground-truth and estimated positions of the tip module (8-
th mic-acc module). The average estimation error was the
average distance between the ground-truth and estimated
positions of all the modules. The ground-truth position of
each module was measured using a motion capture system
(OptiTrack, NaturalPoint Inc.). The estimation errors were
evaluated with 32 different initial states. Since the conven-
tional sound-only method, which does not consider the tilt
information, has rotation ambiguity at the x-axis of the 1-st
mic-acc module, we rotated the estimated posture to make
the average estimation error as small as possible.

B. Experimental Results

As shown in Figs. 8 and 9, in all conditions, the proposed
method suppressed the tip position errors at the initial states

to about 0.2 m and suppressed the average position errors
there to less than 0.2 m. Moreover, when the robot was placed
in rubble-containing environments (conditions 2 and 3), the
baseline sound-based method failed to estimate the robot’s
posture. The proposed method, on the other hand, robustly
suppressed the estimation errors

As shown in Fig. 10, in the all conditions, the postures esti-
mated by the proposed method were close to the ground-truth
posture, whereas when the robot was placed in condition 2 or
3, the first joint angle estimated by the conventional method
was significantly different from the ground-truth posture.
Both of the rubble-containing environments had a wooden
stick in front of the joint place (2nd src-vib module) to
prevent estimation of the robot posture. This shows that in
the proposed method the lack of information at the joint
was compensated by the information obtained from the
accelerometers.

As shown in Fig. 11, when the errors of the initial
state of the Kalman filter were larger than those in the
other conditions, the estimation error became larger. In this
condition the standard deviation of initial errors was set
to 30 deg, whereas in the other conditions it was set to
6 deg. This shows that our method is sensitive to the initial
state. This is because mirror symmetrical ambiguity could
not solved even if both TDOA and tilt information were
used. A promising solution to this problem is to predict
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Fig. 8. Tip position errors obtained by proposed and baseline methods
in the three conditions. Polylines and error bars indicate the mean and
standard deviation for 32 different initial states, respectively.
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Fig. 9. Average position errors obtained by proposed and baseline
methods in three conditions. Polylines and error bars indicate the mean
and standard deviation for 32 different initial states, respectively.

the time-varying posture of a moving robot in a dynamical
manner. Since the posture at the initial insertion is given
with a insertion-guide pipe [2], we can obtain the current
posture by tracking the time-varying posture during the
insertion. It was shown that a sound-based method can
track the moving posture by considering the posture change
rate [20]. Integration with sequential information obtained by
accelerometers and gyrometers would also be beneficial for
further improvement of 3D time-varying posture estimation.

V. CONCLUSION

This paper presented a 3D posture estimation method
using microphones and accelerometers for a hose-shaped
rescue robot. Since correct TDOAs are not always obtained at
all microphones if a reference signal is blocked by some ob-
stacles, our method incorporates tilt information obtained by
the accelerometers for estimating a robot posture robustly in
rubble-containing environments. We formulated a nonlinear
state-space model that integrates TDOA and tilt information
and used the unscented Kalman filter for posture estimation.
Experiments using a 3 m hose-shaped robot with eight micro-
phones and accelerometers and seven loudspeakers showed
that our method successfully reduced the tip position errors
of the initial states to about 0.2 m even when the robot was
placed in rubble-containing environments.

Although our method can work well to a certain ex-
tent in rubble-containing environments, further performance
improvement would be feasible by adaptively changing a
threshold that accepts only correct TDOAs. To estimate the
3D time-varying posture of a moving hose-shaped robot, we
plan to integrate angular-velocity information obtained by
gyrometers into a unified state-spate model. This approach
could reduce the initial-state sensitivity of the method be-
cause the mirror symmetrical problem of posture estimation
could be solved by focusing on dynamical change of the
posture. Since the proposed state-space model was designed
to maintain the dynamics of the posture, it is easy to integrate
these sensors. The resulting method will be evaluated in a
realistic disaster environment. A series of our studies will
help the remote operator to freely manipulate a hose-shaped
robot in an unseen rubble-containing environment.
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in condition 3. The standard deviation of initial errors was set to 30 deg (it
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