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Abstract—This paper presents a human-voice enhancement
method for a deformable and partially-occluded microphone ar-
ray. Although microphone arrays distributed on the long bodies
of hose-shaped rescue robots are crucial for finding victims under
collapsed buildings, human voices captured by a microphone
array are contaminated by non-stationary actuator and friction
noise. Standard blind source separation methods cannot be used
because the relative microphone positions change over time and
some of them are occasionally shaded by rubble. To solve these
problems, we develop a Bayesian model that separates multi-
channel amplitude spectrograms into sparse and low-rank com-
ponents (human voice and noise) without using phase informa-
tion, which depends on the array layout. The voice level at each
microphone is estimated in a time-varying manner for reducing
the influence of the shaded microphones. Experiments using a
3-m hose-shaped robot with eight microphones show that our
method outperforms conventional methods by the signal-to-noise
ratio of 2.7 dB.

I. INTRODUCTION

Among the rescue robots developed for gathering informa-
tion in places humans or animals cannot go are hose-shaped
robots specialized for penetrating into narrow gaps under col-
lapsed buildings [1], [2]. The Active Scope Camera, for ex-
ample, can move forward by vibrating cilia covering its long,
thin, and flexible body [2]. Using a microphone array and a
tip camera equipped on the robot (Fig. 1), a robot operator
searches for victims. These microphones are distributed along
the body to avoid all of them being covered by obstacles [3].

Human voices captured by a hose-shaped robot are con-
taminated by non-stationary ego-noise (e.g., motor and fric-
tion noise). The naı̈ve “stop-and-listen” strategy prevents a
robot operator from finding victims from wide areas as quickly
as possible. Conventional methods of ego-noise suppression
based on pre-trained noise dictionaries [4]–[7] cannot be used
because the ego-noise changes over time according to the
robot’s movements and surrounding materials.

In the aspect of microphone-array processing, human-voice
enhancement for a hose-shaped robot faces two problems:
1) Deformable layout of microphones: The relative micro-
phone positions change over time because of the vibration and
deformation of the robot body.
2) Partial occlusion of microphones: Some of the micro-
phones often fail to capture human voice when they are shaded
by rubble around the robot.
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Fig. 1. A hose-shaped rescue robot with an eight-channel microphone array.

One possibility to solve the first problem is to estimate the
time-varying body shape [8]. The accuracy of the shape esti-
mation is, however, insufficient for phase-based source sepa-
ration methods that solve the second problem [9], [10].

In this paper we present a Bayesian human-voice enhance-
ment method for a deformable and partially-occluded micro-
phone array. Our method works on the amplitude domain [11]
to avoid using unreliable phase information sensitively affected
by the array layout. Multi-channel amplitude spectrograms
are separated into sparse and low-rank components (human
voice and noise) without prior training [12]–[14]. To reduce
the influence of the shaded microphones, the voice level at
each microphone is estimated in a time-varying manner.

II. RELATED WORK

This section discusses conventional methods of phase-based
and amplitude-based source separation.

A. Phase-based source separation methods

Blind source separation based on the phase differences be-
tween the microphones can be used without prior knowledge
about microphones and sources [9], [15]–[18]. Multi-channel
nonnegative matrix factorization (MNMF) [16]–[18], for ex-
ample, decomposes given multi-channel complex spectrograms
into multiple low-rank source spectrograms and their trans-
fer functions. Kounades-Bastian et al. [18] extended MNMF
for moving sources by assuming a Markov chain of time-
varying transfer functions. Since these methods assume that
each source is observed by all the microphones, the separation
performance is degraded when each microphone is contami-
nated by ego-noise specific to that microphone. In addition,
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these methods are degraded when the transfer functions are
changed finely and randomly by the actuator vibration.

B. Amplitude-based source separation methods
One way to avoid estimating the time-varying transfer func-

tions of sound sources is to perform multi-channel source
separation in the amplitude domain. Chiba et al. [11], for
example, proposed a source separation method for a set of
asynchronous microphone arrays. The phase differences be-
tween asynchronous microphones are gradually changed over
time by the clock rate differences between those microphones.
Since the phase information is unreliable, NMF is applied to
multi-channel amplitude spectrograms under a limited condi-
tion that the volume level ratios of each sound source among
channels is known in advance. It is, however, difficult to know
such information in rubble-existing environments.

Low-rank and sparse decomposition is a popular approach to
suppressing non-stationary noise and enhancing human voice
without prior training [12]–[14], [19], [20]. Robust princi-
pal component analysis (RPCA), for example, can be used
for decomposing a single-channel amplitude spectrogram into
low-rank and sparse amplitude spectrograms corresponding to
noise and human voice [12], [13]. RPCA can be extended in
a Bayesian manner to deal with uncertainty of latent low-rank
and sparse components [21], [22]. To estimate background
and foreground images from video streams, Ding et al. [21]
proposed a method that imposes a Markovian constraint on
sparse components of video images (foreground images) for
reducing salt-and-pepper noise. Babacan et al. [22] derived a
variational Bayesian (VB) algorithm for Bayesian RPCA (VB-
RPCA) to reduce the computational cost. Application of RPCA
to audio and image data, however, is not physically justified
because RPCA allows input, low-rank, and sparse amplitude
spectrograms or images to take negative values.

To analyze audio spectrograms or video images, robust NMF
(RNMF) has been studied for decomposing an input nonnega-
tive matrix into nonnegative low-rank and sparse matrices [19],
[20]. Sun et al. [20] proposed a variant of RNMF having a cost
function based on the Kullback-Leibler divergence, which has
widely been used in NMF-based audio source separation. Like
Bayesian RPCA, Bayesian interpretation of RNMF is expected
to enhance further extensions for multi-channel audio data.

III. VARIATIONAL BAYESIAN MULTI-CHANNEL RNMF
This section describes the proposed method that decom-

poses multi-channel audio data into channel-wise low-rank
components and sparse components common to all the chan-
nels as shown in Fig. 2. The volume level of the common
sparse components is estimated at each microphone. We first
formulate variational Bayesian RNMF (VB-RNMF) that is a
counterpart of VB-RPCA for single-channel audio data. Its
multi-channel extension (VB-MRNMF) is then formulated.

A. Problem statement
The hose-shaped robot assumed in this paper has micro-

phones distributed along its body as shown in Fig. 1. The mi-
crophones indices range from 1 at the operator’s hand position
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Fig. 2. Overview of the proposed multi-channel robust NMF.

to M at the tip of the robot. Let F and T be the numbers of
frequency bins and time frames, respectively, and let f and t be
the indices of them. The human voice enhancement problem
in this paper is defined as follows:

Input: M -channel amplitude spectrograms Ym∈RF×T
+

Output: Denoised amplitude spectrogram S∈RF×T
+

where R+ represents the set of nonnegative real values. The
amplitude spectrogram is defined as the absolute values of the
short-time Fourier transform (STFT) of a time-domain signal.

B. VB-RNMF for a single microphone
We first formulate variational Bayesian RNMF (VB-RNMF)

for a single-channel input Y = [y1, . . . ,yT ] ∈ RF×T
+ . VB-

RNMF approximates an input spectrogram as the sum of a
low-rank spectrogram L = [l1, . . . , lT ] ∈ RF×T

+ and a sparse
spectrogram S = [s1, . . . , sT ] ∈ RF×T

+ as follows:

yt ≈ lt + st. (1)

In the same way as VB-RPCA [22], the low-rank spectrogram
is represented by the product of K spectral basis vectors W =
[w1, . . . ,wK ] ∈ RF×K

+ and their temporal activation vectors
H = [h1, . . . ,hT ] ∈ RK×T

+ as follows:

yt ≈ Wht + st. (2)

The low-rankness and sparseness of each term can be con-
trolled in a Bayesian manner stated below.

1) Likelihood function: The proposed method tries to min-
imize the approximation error for the input spectrogram by
using the Kullback-Leibler (KL) divergence. Since the maxi-
mization of a Poisson likelihood (denoted by P) corresponds
to the minimization of a KL divergence, the likelihood function
is defined as follows:

p(Y|W,H,S) =
∏
f,t

P

(
yft

∣∣∣∣∣∑
k

wfkhkt + sft

)
. (3)

2) Prior distributions on low-rank components: Our low-
rank modeling is inspired by Bayesian NMF [23] that has been
studied for low-rank decomposition of audio spectrograms.
Since the gamma distribution (denoted by G) is a conjugate
prior for the Poisson distribution, gamma priors are put on the
basis and activation matrices of the low-rank components as
follows:

p(W|αwh, βwh) =
∏
f,k

G(wfk|αwh, βwh), (4)
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p(H|αwh, βwh) =
∏
k,t

G(hkt|αwh, βwh), (5)

where αwh ∈ R+ and βwh ∈ R+ represent the shape and rate
parameters of the gamma distribution, respectively. Setting the
shape parameter to 1.0 or less forces the basis and activation
matrices to be sparse [23], which means that the low-rank
component L is forced to be low-rank.

3) Prior distributions on sparse components: In VB-RPCA,
Gaussian priors with the Jeffreys hyperpriors are put on sparse
components [22]. To force the sparse components to take non-
negative values, gamma priors with rate parameters given the
Jeffreys hyperpriors are put on those components as follows:

p(S|αs,βs) =
∏
f,t

G(sft|αs, βs
ft), (6)

p(βs
ft) ∝ (βs

ft)
−1. (7)

where αs ∈ R+ represents the hyperparameter of the gamma
distribution. In our formulation the sparseness is controlled by
this shape parameter αs.

C. VB-MRNMF for multiple microphones

We then formulate variational Bayesian multi-channel RNMF
(VB-MRNMF). The relationship between the target voice sig-
nal st ∈ RF

+ and its observation at each microphone y′
mt ∈ RF

+

is assumed to be represented by a time-variant and frequency-
invariant linear system:

y′
mt ≈ gmtst, (8)

where gmt ∈ R+ represents a gain of the target voice signal at
microphone m and time t. Using this propagation model, an
input spectrogram of each microphone Ym = [ym1, . . . ,ymT ]
is decomposed into channel-wise low-rank spectrograms (ego-
noise) and a sparse spectrogram common to the microphones
(target voice) S = [s1, . . . , sT ] ∈ RF×T

+ as follows:

ymt ≈ Wmhmt + gmtst, (9)

where Wm ∈ RF×K
+ and Hm = [hm1, . . . ,hmT ] ∈ RK×T

+

represent the basis and activation matrices of the channel-wise
low-rank components, respectively.

1) Likelihood function and prior distributions: The likeli-
hood function and prior distributions except for those on the
gain parameters gmt are formulated in the same way as VB-
RNMF (Eqs. 3–7). A gamma prior is put on gmt as follows:

p(gmt|αg) = G(gmt|αg, αg), (10)

where αg ∈ R+ is a hyperparameter controlling the variance
of the gain parameters.

D. Variational Bayesian inference

Our goal is to calculate the full posterior distribution of the
unknown parameters p(W1:m,H1:m, g1:m,S,β|Y1:m). Since
the true posterior is analytically intractable, we approximate it
by using a variational Bayesian (VB) algorithm [22], [23]. Let
Θ be a set of all parameters and q(x) be a variational posterior
distribution. The true posterior distribution is approximated
as p(Θ|Y1:M ) ≈ {

∏
m q(Wm)q(Hm)q(gm)} q(S)q(βs), and

the parameters of each variational distribution are estimated by
minimizing the KL-divergence between the true and approxi-
mated distributions.

Since the probability distributions used in VB-MRNMF are
in the conjugate exponential family, the form of each poste-
rior approximation can be found by using Jensen’s inequality
and the Lagrange multiplier framework [23]. Let ⟨x⟩ be the
mean value of the posterior distribution of x. Each variational
posterior distribution is alternately and iteratively updated by
fixing the other distributions as follows:

q(wmfk) = G(αwh+
∑
t

ymftλ
wh
mftk, β

wh+
∑
t

⟨hmtk⟩), (11)

q(hmtk) = G(αwh+
∑
f

ymftλ
wh
mftk, β

wh+
∑
f

⟨wmfk⟩), (12)

q(gmt) = G(αg +
∑
f

ymftλ
gs
mft, α

g +
∑
f

⟨sft⟩), (13)

q(sft) = G(αs +
∑
m

ymftλ
gs
mft, ⟨β

s
ft⟩+

∑
m

⟨gmt⟩), (14)

q(βs
ft) = G(αs, ⟨sft⟩), (15)

λwh
mftk =

G[wmfk]G[hmtk]∑
k G[wmfk]G[wmtk] +G[gmt]G[sft]

, (16)

λgs
mft =

G[gmt]G[sft]∑
k G[hmfk]G[hmtk] +G[gmt]G[sft]

, (17)

where G[x] = exp(⟨log x⟩) represents the geometric mean,
and λwh

mftk and λgs
mft are auxiliary variables.

IV. EXPERIMENTAL EVALUATION

We report results of human-voice enhancement using actual
recordings and numerically simulated audio signals.

A. Implementation

As shown in Fig. 1, the body of a hose shaped robot used
in this evaluation was made with a corrugated tube 38 mm in
diameter and 3 m long. The entire surface of the robot was
covered by cilia and seven vibrators used for moving forward
by vibrating the cilia. This robot had M = 8 synchronized
microphones distributed on its body at 40 cm intervals. The
audio signals of these microphones were captured at 16 kHz
and with 24-bit sampling.

The parameters for VB-MRNMF were as follows. The shift
and window lengths of the STFT were set to 160 and 1024
samples, respectively. The hyperparameters αwh, βwh, αg ,
and αs were set to 1.0, 1.0, 5.0, and 0.7, respectively. The
number of bases K was set to 20. These parameters had
been determined experimentally. In this paper we iterated VB-
MRNMF 200 times with random parameter initialization.

B. Experiment 1: Actual recordings

We evaluated the proposed method in the condition that the
robot moved under rubble.

1) Experimental conditions: To simulate rubble disturbing
sound propagation, styrene foam boxes are piled up (Fig. 3-
(a)). A male subject sit 4 m away from this rubble (Fig. 3-(b))
and called for rescue in Japanese (e.g., “Tasukete,” “Ôi,” and
“Darekâ”). The robot was inserted from behind the rubble and
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Fig. 3. Condition of rubble and target human voice of experiment 1.

TABLE I
SNR IMPROVEMENT (DB) IN EXPERIMENT 1

VB-MRNMF
(Sec. III-C)

VB-RNMF
(Sec. III-B)

Med-RPCA
[3]

RPCA
[12]

MNMF
[17]

IVA
[15]

HRLE
[24]

4.29 0.49 1.62 -0.57 -0.18 0.02 -0.89

captured eight-channel audio signals (mixtures of ego-noise
and target voice signals) for 60 seconds during the insertion.
For reference, the target voice signals were recorded using a
microphone close to the subject’s mouth.

Since it was impossible to obtain pure human-voice signals
captured by the robot microphones, we used the signal-to-noise
ratio (SNR) as a evaluation criteria of this experiment:

SNR(Ŝ,S, α) = 10 log10

∑
f,t α

2s2ft∑
f,t(ŝft − αsft)2

, (18)

where S ∈ RF×T
+ and Ŝ ∈ RF×T

+ represent the amplitude
spectrograms of reference and estimated target voice signals,
respectively, and α represents a gain parameter compensating
for the level difference between S and Ŝ. This gain parameter
was determined with minimum mean-square error estimation
(MMSE) between αS and Ŝ. The estimated SNR of the input
signal was −14.7 dB.

The proposed VB-MRNMF and VB-RNMF were compared
with MNMF [17], independent vector analysis (IVA) [15],
RPCA [12], and histogram-based recursive level estimation
(HRLE) [24] which is a conventional single-channel spectrum
subtraction method. The number of sources was set to eight
for MNMF and IVA because seven vibrators generated noise
and one target voice existed. Since these methods cannot dis-
tinguish the target source and other noise sources, the SNR
performance was determined by taking a maximum SNR value
in all the eight separation results. The results of VB-RNMF,
RPCA, and HRLE were obtained by using the tip (8th) micro-
phone signals. We also evaluated extended RPCA results that
were obtained by taking median values of all the microphone
results (Med-RPCA) [3].

2) Experimental results: TABLE I shows that VB-MRNMF
outperformed any of the other methods. It improved the SNR
by 2.7 dB more than Med-RPCA, which had the second per-
formance, did. Comparing VB-MRNMF with VB-RNMF, we
see that the proposed multi-channel extension improved the
SNR by 3.8 dB. Fig. 4 shows the amplitude spectrogram of an
observed signal (at the tip microphone) and a voice-enhanced
version obtained by VB-MRNMF. These results showed that
the proposed method successfully suppressed the time-varying
ego-noise.
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Fig. 4. Examples of enhancement result of experiment 1.
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Fig. 5. Four conditions of robot and loudspeaker in experiment 2.

C. Experiment 2: Numerically simulated audio signals

To analyze the performance of the proposed method in de-
tail, we evaluated with numerically simulated audio signals.

1) Experimental conditions: Ego-noise and target voice sig-
nals were captured independently and then mixed at SNRs
varying from −20 dB to +5 dB. As shown in Fig. 5, there
were four conditions differing in the relative positions of the
robot and a loudspeaker emitting target voice signals.
1) Open-Front: The robot was in an experimental room with

no obstacles. The loudspeaker was in front of the robot.
The reverberation time (RT60) of the room was 750 ms.

2) Open-Right: Same as Open-Front except that the loud-
speaker was to the right of the robot.

3) Door-4ch: The robot was caught by a door, the loudspeaker
was in front of the robot, and four of the microphones were
behind the door. The reverberation time was 990 ms.

4) Door-2ch: Same as Door-4ch except that six microphones
were behind the door.

The ego-noise was recorded for 60 seconds under each con-
dition while sliding the robot left and right by using vibrators
and a hand. The target-voice data consisted of two recordings
of male voices and two recordings of female voices, each
of which was one-minute long. It should be noted that the
target source did not move in this experiment because it was
recorded when the robot was stationary. In this experiment, the
enhancement performance was evaluated by using the signal-
to-distortion ratio (SDR) [25], [26].

2) Experimental results: As shown in Fig. 6, in the Open-
Front and -Right conditions, VB-MRNMF performed better
than any of the other methods. In the Door-4ch and -2ch
conditions where some microphones were shaded, the perfor-
mances of conventional multi-channel methods (MNMF, IVA,
and Med-RPCA) were worse than those of the single-channel
methods. Although VB-MRNMF was also degraded in these
conditions, its performance was comparable to the results of
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Fig. 6. Human-voice enhancement performance of experiment 2 in SDR.
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Fig. 7. Examples of time-varying powers of sparse spectrogram obtained by
VB-MRNMF at each microphone when SNR was −5 dB. Male voice was
emitted between 0.5 sec and 1.5 sec.

VB-RNMF in the Door-4ch condition except for the SNR
condition of −20 dB.

Fig. 7 shows time-varying powers of the sparse spectrogram
obtained by VB-MRNMF at each microphone. In the Door-
4ch and -2ch conditions, the power of channel-wise sparse
components that were separated from the sound source (in the
Door-4ch condition the 1st to 4th microphones, in the Door-
2ch condition the 1st to 6th microphones) got significantly
smaller. This shows that the gain estimation can be used for
estimating the reliability of each microphone.

One way to improve VB-MRNMF is selection of valid mi-
crophones. The SDR performance of VB-RNMF was better
than that of VB-MRNMF when only two microphones were
available (in the Door-2ch condition). The proposed method
would be improved by selecting microphones when a few
microphones are available. The idea of beta-process NMF [27]
will be effective for this extension.

V. CONCLUSION

This paper presented a multi-channel blind human-voice en-
hancement method based on variational Bayesian multi-channel
RNMF (VB-MRNMF). Human-voice enhancement for a hose-
shaped robot needs to address two main problems: deformable
layout of microphones and partial occlusion of microphones.
To solve these problems, we developed a Bayesian model that
separates multi-channel amplitude spectrograms into sparse
and low-rank components (human voice and noise) without
using phase information depending on the array layout. The
voice level at each microphone is estimated in a time-varying
manner for reducing the influence of the shaded microphones.
Experiments using a 3-m hose-shaped rescue robot with eight
microphones showed that the proposed method improves the
SNR of a human voice 2.7 dB more than conventional blind
source separation methods do. Future work includes the deriva-
tion of online updating for real-time processing that is manda-
tory for rescue tasks. Furthermore, we will conduct more prac-
tical experiments for evaluating the effectiveness of the pro-
posed method in search-and-rescue tasks.

ACKNOWLEDGMENTS
This study was partially supported by ImPACT Tough Robotics

Challenge and by JSPS KAKENHI No. 24220006 and No. 15J08765.

REFERENCES

[1] R. R. Murphy, Disaster Robotics. MIT Press, 2014.
[2] J. Fukuda et al., “Remote vertical exploration by active scope camera

into collapsed buildings,” in IEEE/RSJ IROS, 2014, pp. 1882–1888.
[3] Y. Bando et al., “Human-voice enhancement based on online RPCA for

a hose-shaped rescue robot with a microphone array,” in IEEE SSRR,
2015, pp. 1–6.

[4] A. Deleforge et al., “Phase-optimized K-SVD for signal extraction from
underdetermined multichannel sparse mixtures,” in IEEE ICASSP, 2015,
pp. 355–359.

[5] B. Cauchi et al., “Reduction of non-stationary noise for a robotic living
assistant using sparse non-negative matrix factorization,” in SMIAE,
2012, pp. 28–33.

[6] K. Furukawa et al., “Noise correlation matrix estimation for improving
sound source localization by multirotor UAV,” in IEEE/RSJ IROS, 2013,
pp. 3943–3948.

[7] G. Ince et al., “Assessment of general applicability of ego noise
estimation,” in IEEE ICRA, 2011, pp. 3517–3522.

[8] Y. Bando et al., “Microphone-accelerometer based 3D posture estimation
for a hose-shaped rescue robot,” in IEEE/RSJ IROS, 2015, pp. 5580–
5586.

[9] J. Nikunen et al., “Direction of arrival based spatial covariance model
for blind sound source separation,” IEEE/ACM TASLP, vol. 22, no. 3,
pp. 727–739, 2014.

[10] Y. Tatekura et al., “Sound source separation with shaded microphone
array,” JARP, vol. 3, no. 2, 2013.

[11] H. Chiba et al., “Amplitude-based speech enhancement with nonneg-
ative matrix factorization for asynchronous distributed recording,” in
IWAENC, 2014, pp. 203–207.

[12] C. Sun et al., “Noise reduction based on robust principal component
analysis,” JCIS, vol. 10, no. 10, pp. 4403–4410, 2014.

[13] E. J. Candès et al., “Robust principal component analysis?” JACM,
vol. 58, no. 3, p. 11, 2011.

[14] Z. Chen et al., “Speech enhancement by sparse, low-rank, and dictionary
spectrogram decomposition,” in IEEE WASPAA, 2013, pp. 1–4.

[15] N. Ono, “Stable and fast update rules for independent vector analysis
based on auxiliary function technique,” in IEEE WASPAA, 2011, pp.
189–192.

[16] A. Ozerov et al., “Multichannel nonnegative matrix factorization in
convolutive mixtures for audio source separation,” IEEE TASLP, vol. 18,
no. 3, pp. 550–563, 2010.

[17] D. Kitamura et al., “Efficient multichannel nonnegative matrix factor-
ization exploiting rank-1 spatial model,” in IEEE ICASSP, 2015, pp.
276–280.

[18] D. Kounades-Bastian et al., “A variational EM algorithm for the sepa-
ration of moving sound sources,” in IEEE WASPAA, 2015, pp. 1–5.

[19] N. Dobigeon et al., “Robust nonnegative matrix factorization for nonlin-
ear unmixing of hyperspectral images,” in WHISPERS, 2013, pp. 1–4.

[20] M. Sun et al., “Speech enhancement under low SNR conditions via
noise estimation using sparse and low-rank NMF with Kullback–Leibler
divergence,” IEEE/ACM TASLP, vol. 23, no. 7, pp. 1233–1242, 2015.

[21] X. Ding et al., “Bayesian robust principal component analysis,” IEEE
TIP, vol. 20, no. 12, pp. 3419–3430, 2011.

[22] S. D. Babacan et al., “Sparse Bayesian methods for low-rank matrix
estimation,” IEEE TSP, vol. 60, no. 8, pp. 3964–3977, 2012.

[23] A. T. Cemgil, “Bayesian inference for nonnegative matrix factorisation
models,” CIN, vol. 2009, no. 785152, pp. 1–17, 2009.

[24] H. Nakajima et al., “An easily-configurable robot audition system using
histogram-based recursive level estimation,” in IEEE/RSJ IROS, 2010,
pp. 958–963.

[25] E. Vincent et al., “Performance measurement in blind audio source
separation,” IEEE TASLP, vol. 14, no. 4, pp. 1462–1469, 2006.

[26] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto, D. Liang,
and D. P. Ellis, “mir eval: a transparent implementation of common MIR
metrics,” in ISMIR, 2014, pp. 367–372.

[27] D. Liang et al., “Beta process non-negative matrix factorization with
stochastic structured mean-field variational inference,” arXiv preprint
arXiv:1411.1804, 2014.

2016 24th European Signal Processing Conference (EUSIPCO)

1022


