
Recognition of In-Field Frog Chorusing Using
Bayesian Nonparametric Microphone Array Processing

Yoshiaki Bando†, Takuma Otsuka‡, Ikkyu Aihara∗, Hiromitsu Awano†,
Katsutoshi Itoyama†, Kazuyoshi Yoshii†, and Hiroshi G. Okuno∗∗
†Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.
‡ NTT Communication Science Laboratories, Kyoto, 351-0114, Japan.

∗Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan.
∗∗Graduate School of Embodiment Informatics, Waseda University, Tokyo, 169-0072, Japan.

{yoshiaki, ohtsuka, itoyama, yoshii, okuno}@kuis.kyoto-u.ac.jp,
ikkyu.aihara@gmail.com, awano@easter.kuee.kyoto-u.ac.jp

Abstract

In this paper, we exploit Bayesian nonparametric micro-
phone array processing (BNP-MAP) for analyzing the spatio-
temporal patterns of the frog chorus. Such analysis in real en-
vironments is made more difficult due to unpredictable sound
sources including calls of various species of animals. An ap-
plication of conventional signal processing algorithms has
been difficult because these algorithms usually require the
number of sound sources in advance. BNP-MAP is developed
to cope with auditory uncertainties such as reverberation or
unknown number of sounds by using a unified model based
on Bayesian nonparametrics. We exploit BNP-MAP for ana-
lyzing the sound data of 20 minutes captured by a 7-channel
microphone array in a paddy rice field in Oki Island, Japan,
and revealed that two individuals of Schlegel’s green tree frog
(Rhacophorus schlegelii) called alternately with anti-phase.
This result is compared with the video data captured by a
video camera with 18 units of sound-imaging devices called
Firefly deployed along the bank of the rice field. The audi-
tory result provides more detailed patterns of the frog chorus
in higher temporal resolutions. This higher resolution enables
to analyze fine temporal structures of the frog calls. For ex-
ample, BNP-MAP reveals the trill-like calling pattern of R.
schlegelii.

Introduction
In singing the following German folksong “Der Froschge-
sang” (Froggy Song):

Ganze Sommer næchtelang, hören wir den Frosch gesang;
quak quak quak quak, kæ kæ kækæ kæ kæ kæ quak quak quak.

How do singers sing “quak quak quak quak, kæ kæ kæ kæ
kæ kæ kæ quak quak quak.”? Do they sing the whole phrase
together or by two groups? For the latter, one group sings
“quak quak quak quak, 〈SILENCE〉 quak quak quak.”, while the
other one sings “〈SILENCE〉 kæ kæ kæ kæ kæ kæ kæ 〈SILENCE〉 .”

This has been an open problem of the frog chorus for a
long time. Aihara et al. modeled frog chorusing as a cou-
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(a) Schlegel’s green tree frog
(Rhacophorus schlegelii)

(b) Japanese tree frog
(Hyla japonica)

Figure 1: Two species of tree frogs and their calls

pled non-linear oscillator system and obtained the follow-
ing results by simulation: two-frog chorusing has anti-phase
synchronization, and three-frog chorusing has two stable
states; 2:1 anti-phase, and triphase synchronization. These
simulated results are confirmed by recording choruses of
Japanese tree frog (Hyla japonica) (see Figure 1(b)) in a lab-
oratory and analyzing the recordings by independent com-
ponent analysis (Aihara et al. 2011). This observation treats
only dyadic or triadic interactions among neighbors in a lab-
oratory.

Recently, Aihara et al. discovered that H. japonica call al-
ternately with anti-phase in paddy rice fields (Aihara et al.
2014). This observation was obtained by using 40 units of
sound-imaging device called Firefly shown in Figure 2(a)
developed by Mizumoto et al. (Mizumoto et al. 2011), in-
stead of using a microphone array. Since frog chorusing are
truly dynamic environments for social communication, in-
field recordings contain a lot of sounds. Microphone array
processing for such recordings is very difficult due to var-
ious uncertainties caused by dynamic environments. Con-
ventional signal processing algorithms assume the number
of sound sources in advance, but this assumption does not
hold in a real-world environment.

The 60th anniversary essay of Animal Behaviour advo-
cates the importance of recent signal processing technolo-
gies (Bee, Schwartz, and Summers 2013); Bee et al. pointed
out that Firefly and microphone array processing are promis-
ing directions to explore the complexity of chorus organiza-
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(a) Firefly (b) Microcone

Figure 2: Sound-imaging device Firefly and microphone ar-
ray called Microcone (Dev-Audio)

tion. Recording and analyzing interactions over large spatial
and temporal scales are really challenging. Microphone ar-
ray processing not only localizes calling males but also sep-
arates each calling signals for subsequent acoustic analysis.
Microphone array processing with conventional delayed-
sum beamformer was used for frog chorusing (Jones, Jones,
and Ratnam 2014; Megela Simmons, Simmons, and Bates
2008).

Recent advancement of statistical signal processing has
gained a further applicability. A Bayesian nonparametric mi-
crophone array processing (BNP-MAP) simultaneously lo-
calizes and separates sound sources even when the number
of sound sources is unknown in advance (Otsuka et al. 2014;
2012).

The extraction of calling sounds of targeted species from
the observed mixture is essential to the analysis in the actual
field, while the uncertainties such as an unknown number
of sound sources in the observation is problematic for the
robust extraction process. We employ BNP-MAP, which is
a microphone array processing technique based on a prob-
abilistic model, to deal with the extraction of target sound
sources under the uncertainties.

Computational sustainability and Biodiversity
A goal of computational sustainability is to develop com-
putational methods for a sustainable environment, economy
and society (Gomes 2009). Some researchers focus on biodi-
versity and species conservation. eBird project is establish-
ing a crowd sourcing for collecting bird observation. It uses
machine learning to detect faults of observations and grade
the capability of each human observer and then improve the
skills of human as well as the system’s capabilities (Kelling
et al. 2013; Sullivan et al. 2009).

Cody et al. discovered that birds of the same species sing
songs synchronously and stop singing to avoid soundspace
overlap when other species are singing (Cody and Brown
1969). Suzuki et al. are developing “HARKBird” to local-
ize and separate each bird song in natural environments and
visualize auditory scene (Suzuki, Taylor, and Cody 2014).
HARKBird uses a robot audition software called HARK
(Nakadai et al. 2010) with a microphone array called Mi-
crocone (Dev-Audio) shown in Figure 2(b). Large-scale in-
teractions by bird communities provide not only clues for
understanding bird lives but also ideas for designing ICT

Figure 3: Setting of in-field experiment. 18 units of Fireflies
are deployed on the two banks of a paddy rice field. One
Microcone microphone array is used. Two frogs, Frog1 and
Frog2, of R. schlegelii remain at almost same position during
the recording.

protocols. This avoidance of soundspace overlap exploits
temporal resource partitioning, which inspired a protocol for
wireless sensor networks “DESYNC” (Dogesys et al. 2007).

Why do we focus on Rhacophorus schlegelii?
In this paper, we study the chorus structures of R. schlegelii
(see Figure 1(a)). Choruses of R. schlegelii can be observed
widely in Japan, from Kagoshima to Aomori prefecture
(Maeda and Matsui 1999). They usually breed in paddy
fields in April and May. Some male frogs of R. schlegelii
start calling immediately after sunset, and then the chorus
size becomes larger. Since the male frogs call in holes un-
der the ground of the banks of paddy fields, it is difficult
to precisely localize the positions of callers. In addition,
calls of R. schlegelii show complicated temporal structures;
namely, a single call consists of several pulses vocalized
at the intervals of 40 msec (Maeda and Matsui 1999) as
shown in Figure 1(a) . To reveal the acoustic interactions of
R. schlegelii calling under the ground by using such complex
calls, sophisticated experimental techniques are required. To
our knowledge, this is the first study examining the chorus
structures of R. schlegelii by combining microphone-array
and sound-imaging techniques.

Experiments: Methods and Results
This section presents localization and separation results of
the in-field experiment. The result of BNP-MAP is com-
pared with the state-of-the-art sound separation methods:
HARK and Firefly.

In-field Recording
We recorded frog choruses of two individuals of R. schlegelii
in a paddy rice field in Oki Island in Japan this June be-
tween 22:20 and 22:40. As illustrated in Figure 3, we placed
one Microcone microphone array, 18 units of Fireflies, and
one video camera around the field. Microcone captured mul-
tichannel sound signals at 16 kHz sampling. The spatio-
temporal light pattern of the Fireflies was captured using a
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Figure 4: Input and separated sound sources by BNP-MAP.
The top 2 figures are the waveform and its spectrogram
of the sound captured by one microphone of Microcone.
The next eight waveforms correspond to separated sound
sources, SS1–SS8. Frog 1 and 2 correspond to SS6 and SS3,
respectively. SS1, SS2, and SS5 are calls of three individuals
of H. japonica. SS4, SS7, and SS8 are other noise sources
out of the video camera’s visual field.

handy video camera, Sony HDR-XR550V, with HD quality
at 29.97 fps sampling.

Since male frogs of R. schlegelii are calling in a hole under
the ground, it is quite difficult to find them at night. Hence,
we located one by one by carefully listening to each call
for obtaining the ground truth of frog locations illustrated in
Figure 3. During the recording, two individuals were con-
firmed to stay at almost the same position. We confirmed
that all the frogs in the target area were covered with Fire-
flies and that the video camera captured the LED lights of
all the Fireflies prior to the field recordings.

Single and AV-integrated Analysis
Sound sources separated by BNP-MAP and HARK are in-
dexed by the direction ranging from -180 degree to 180 de-
gree. The separated signals corresponding to the calls of the
two frogs are labeled manually as Frog1 and Frog2 by con-
sulting to the results of Firefly. Calls of R. schlegelii and H.
japonica were distinguished based on their spectral and tem-
poral properties mentioned in (Maeda and Matsui 1999).

To reduce the computational cost of BNP-MAP, the 20-
minute recording is divided into one-minute segments. Each
one-minute segment is analyzed by BNP-MAP. On the con-
trary, the whole recording is analyzed by HARK. The source

number, a parameter for MUSIC in HARK, is set to 3 exper-
imentally. Figure 4 depicts the sound sources separated by
BNP-MAP. Calls of Frog1 and Frog2 are clearly separated
as SS6 and SS3, respectively. (For details, see its caption.)
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Figure 5: Frequency of Frog1 and Frog2’s calls obtained by
BNP-MAP and HARK. In circular charts, the direction of
segments indicate the calling direction and the length indi-
cate how frequently each frog calls were detected throughout
the recording.

Comparison of localization by BNP-MAP and by HARK
The ground truth almost corresponds to the result of BNP-
MAP. Figure 5 (a) and (b) depict the frequency of the direc-
tions of the frog calls separated by BNP-MAP and by HARK
during the whole time. Localization of Frog2 by HARK
is almost the same as by BNP-MAP, while localization of
Frog1 by HARK is erroneous by about 20 [deg]. This is
because GHDSS-AS uses the “standard” transfer functions
contained in the HARK distribution. The standard transfer
functions were measured each 5 degree in a quiet room, and
thus differs from actual transfer functions in a paddy rice
field. That’s why the localization of Frog2 was consistent.
Considering the fact that the amplitude of SS6 of Frog1 calls
is much smaller than that of SS3 of Frog2 shown in Figure 4,
BNP-MAP is more robust against the power of sound source
than GHDSS-AS of HARK.

Comparison of separation Figure 6 shows the waveform
and spectrogram of sound source separated by either BNP-
MAP or GHDSS-AS for Frog 1 and Frog2. Waveforms by
BNP-MAP are excerpts from Figure 4. While separated sig-
nals for Frog1 separated by BNP-MAP contain small noise,
that of both Frog2 and Frog2 separated by GHDSS-AS con-
tain larger noise. These noise are due to crosstalk of other
sound sources such as three individuals of H. japonica and
other noise sources. This demonstrates that BNP-MAP sep-
aration outperforms GHDSS-AS.

Comparison of separation performance in VAD For
evaluating the separation performance, we use voice activity
detection (VAD), or the duration of calling, obtained by Fire-
fly as the reference. For Frog1 and Frog2, one Firefly clos-
est to each frog position shown in Figure 3 is selected. The
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Figure 6: Separated sound source for the two frogs by BNP-
MAP and GHDSS-AS in waveform and spectrogram. Upper
pairs are for Frog1, while lower for Frog2.
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Figure 7: Precision-Recall curves of quality of separation in
terms of VAD. VAD of Firefly is used as reference.

VAD results of Firefly is a temporal sequence of binary mask
calculated by thresholding each temporal brightness pattern.
The VAD results of BNP-MAP and HARK are calculated by
thresholding the amplitude of the separated signal. Let α be
the threshold to the separated signal, the precision and recall
were calculated as follows:

Precisioni(α) =
#{t|F i

t = 1 and |Si
t | > α}

#{t| |Si
t | > α}

Recalli(α) =
#{t|F i

t = 1 and |Si
t | > α}

#{t|F i
t = 1}

where t, i, F i
t , and Si

t represent time, frog index (1 or 2),
the VAD result of Firefly, and the amplitude of the separated
signal by either BNP-MAP or HARK. #{t|C} denotes the
duration where condition C is satisfied. Since the temporal
resolution of the Firefly (video) and audio signal differ, the
audio stream in 16 kHz recording and video with 29.97 fps
are synchronized such that the sound amplitude is obtained
with the rate of 29.97 fps.

Figure 7 shows the precision-recall curves by varying the
threshold to the separated signals α from 0 to the maximum
amplitude. The precision of Frog1 by GHDSS-AS is much
lower than by BNP-MAP. Since GHDSS-AS requires the
sound source direction in separation, worse localization de-
teriorates the separation performance. This property is com-
mon in most sound source separation algorithm except BSS.
In addition, sound level of calls of Frog1 is weak. Therefore,
the performance of separating Frog1’ calls becomes poor.
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Figure 8: Temporal Synchrony shown by visual and auditory
analysis for two individuals of R. schlegelii. Visual data by
Firefly is shown in scaled brightness and auditory data by
BNP-MAP is shown in scaled amplitude.
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Figure 9: Histogram of phase difference φ1,2 between calls
of Frog 1 and Frog2 for whole recording.

Temporal synchrony between BNP-MAP and Firefly
Figure 8 shows the illumination patterns of two Fireflies de-
ployed besides calling frogs and also the waveforms of sep-
arated sounds by BNP-MAP. It is demonstrated that the two
frogs call alternately with anti-phase (Aihara et al. 2011).
Figure 9 illustrates the phase difference φ1,2 between the
calls of Frog1 and Frog2 which are accumulated by the same
method as (Aihara et al. 2014). This figure also illustrates the
anti-phase calling because the main peak of the histogram is
on φ1,2 = π instead of φ1,2 = 0.

Moreover, the separated sounds by BNP-MAP reveal that
several pulses are included in each call of R. schlegelii. The
interval of the pulses is about 40 ms, which corresponds to
25 Hz. Since it is more than the Nyquist frequency of the
sampling rate of video data capturing the light pattern of
Firefly (29.97Hz), Firefly fails to capture all pulses.

Conclusion
In this paper, we exploit BNP-MAP in analyzing the spatio-
temporal patterns of the frog chorus. BNP-MAP succeeds
in simultaneously estimating localization and separation of
calls of two individuals of R. schlegelii in spite of frog
calls of other species and noise sources. BNP-MAP out-
performs GHDSS-AS in localization and separation. BNP-
MAP increases the temporal resolution from video rate
(29.97 fps) to audio rate (16 kHz). This higher resolution en-
ables to analyze fine temporal structures of frog calls. For
example, BNP-MAP reveals the trill-like calling pattern of
R. schlegelii.

The next step is to design and implement an audio-visual
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integrated system with BNP-MAP and Firefly. It is gener-
ally difficult for microphone array processing algorithms to
separate sound sources whose directions are close to each
other and estimate their distances. The audio-visual integra-
tion can be considered as combination of macroscopic anal-
ysis with Firefly and microscopic analysis with BNP-MAP.
Such hybrid analysis should be developed for actual appli-
cations. We will further evaluate the performance of BNP-
MAP and its audio-visual integration with Firefly in outdoor
environments.
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