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Outline
Introduction: Issues in acoustic modeling & 
robust ASR
Nature of speech variability & need for high-
fidelity models
A multi-layer model that captures variability
Variability: acoustic environment
Variability: speaking behavior
Conclusions and future directions
(thanks to discussions and collaborative work with H. Ney, C. Lee, A. 
Acero, D. Yu, J. Li, J. Droppo & other colleagues at MSR)



Introduction
Issues in acoustic modeling

Probabilistic models (& Features) that embed (imperfect) 
knowledge (Rabiner/Juang93; Acero93;Ostendorf et.al.96; Bilmes2005; Deng 
et.al.2006, etc.) 
Performance Measure (Chou/Juang2003; Povey2004;McDermott et.al.2007)
Training’s Objective Function & its optimization

(Ney2006; Schluter et.al 2001; Liao&Gales2007; He&Deng&Chou,2008)
Decision Rule & optimization algorithm

(Goel&Byrne2000; Lee&Huo2000;Ney2006)

Models (this talk’s focus):
Specify statistical dependency between input (observation) and 
output (speech class)
Can be generative or discriminative
Enable all three other ingredients
Most difficult ingredient
Two case studies: phase sensitive model; articulatory-like constraint
Warrant scientific pursuit (nature of speech variability)



Nature of Speech Variability
Multiple, interacting sources

Pronunciation (phonological & articulatory causes) (Nock&Young,2000)
Accent & dialect
Prosodic & phonetic contexts
Speaking behavior (rate, style, etc.)
(Pitermann 2000; Deng 2006)
Noisy acoustic environment 
(Acero93;Moreno96;Lee98;Zhu&Alwan02;Gong05;Deng&Droppo&Acero04)
Transducer & transmission-channel distortion
Adverse environment that affects articulation
(Junqua 2000; Hansen 2003)

To effectively represent these variability sources for robust 
ASR requires “high-fidelity” acoustic models

Use of a richer set of knowledge in constructing 
probabilistic models of the speech process



A General Modeling Framework
Probabilistic generative model
Multiple layers, each representing 
one major cause of speech variability
Joint distribution among all causes 
and their relationship
Multi-layer dynamic Bayesian network
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Two Case Studies
Generative acoustic modeling for robust 
ASR that accounts for variability due to 

Adverse acoustic environment
Sensitivity of cepstra to random phase between 
speech and mixing noise

Speaking behavior
Interaction between phonetic context and speaking 
rate/style
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Specifying Conditional Dependency in Bayes Net
--- A Phase-Sensitive Model

Clean-speech=x; noise=n; channel=h; noisy-speech=y

relationship in waveform-sample and DFT:

Relationship in powerRelationship in power--spectrum:spectrum:

Instantaneous
mixing phase

•• The last term was usually assumed zero (phaseThe last term was usually assumed zero (phase--

insensitive), which is correct only in expected  senseinsensitive), which is correct only in expected  sense



Phase-Sensitive Model (cont’d)
relationship in Mel-filter power spectrum:

oror ( )2 lα

( )lα



Distribution of Phase Factor 
(Droppo, Acero, Deng, 2002)

-- Sum of many uniformly distributed random variables (filter banks)
-- Central limit theorem at work



Phase-Sensitive Model (cont’d)
relationship in log-power-spectrum:
Define log-power-spectrum vectors:

then:then:
2α 2α

2α 2α

oror



Phase-Sensitive Model (cont’d)
Gaussian assumption for phase factor

Computing conditional prob.:

Jacobian computation:

Final result for conditional dependency:



Speech Enhancement as Bayes-Net Inference

After specifying conditional dependency, carry 
out estimation and inference
Inference on the clean-speech layer in the 
Bayes net speech feature enhancement
Results (iterative enhancement algorithm):

(using 2nd-order Taylor series expansion)



Noisy Speech Recognition Experiments
Aurora 2 noisy speech data
Using power of true noise  (i.e., no est. error)
Recognition accuracy (%) using enhanced features:

Best spectral subtraction (phase insensitive):    95.90%
Use of phase model reduces errors by half, if noise 
“estimate” is accurate

(Deng, Droppo, Acero, 2004)



Experiments (cont’d)

Recognition
Accuracy

Automatic 
noise est.
algorithm 

Assuming
no noise 
est. errors

no phase info 
(low-fidelity)

84.80% 95.90%

phase info 
(high-fidelity)

85.74% 98.27%

--- Much lower relative error reduction when noise estimation errors are introduced
--- Why?



More Recent Experiments

Recognition
Accuracy

Automatic 
noise Est.
algorithm 

Assuming
no noise 
Est. errors

HMM Adapt
(better noise 
est.)

no phase info 
(low-fidelity)

84.80% 95.90% 91.70%
(poster today)

phase info 
(high-fidelity)

85.74% 98.27% 93.32%
(ICASSP08 submitted)



Case Study Two:Case Study Two:
speaking behaviorspeaking behavior
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Temporal Dynamics in Speech: An Illustration

Fundamental problem: Inherent “static” speech-
class overlaps for natural–style speech
Solution: Dynamic specification of speech

--Same speech content, 
with drastically different 
acoustic signatures
--Due partly to 
articulatory inertia

 

/ iy aa iy/ / iy aa iy/ / iy aa iy/



A Formant Trajectory Model

Conditional dependency in the z-layer of the 
Bayes Net
Input to “filter”: target sequence as step 
functions
Output of “filter”: formant trajectories
The output is a convolution between the 
target sequence and the impulse response 
of the “filter”



Model Prediction (effects of speaking “efforts”)Model Prediction (effects of speaking “efforts”)

• The same speech content (/iai/) has different 
formant values

• Speaking effort/rate/style is a big factor  
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• The model predicts exactly the same kind of 
effects  



Model Prediction (effects of speaking rate)Model Prediction (effects of speaking rate)
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Sound Confusion for Casual Speech (model vs. data)
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• Two sounds merge when they become “sloppy”
• Human perception does “extrapolation”; so does our model

• 5000 hand-labeled speech tokens
• Source: J. Acoustical Society of America, 2000



Discriminative-Space Reduction explained 
--- consequence of speaking-behavior variability

clear/slow
conversation

(Krause & Braida, JASA 2004)



Model Prediction of Formants (red)Model Prediction of Formants (red)
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Model Prediction of Cepstra (vs. data)Model Prediction of Cepstra (vs. data)
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Experimental Results 
(phonetic recognition in TIMIT core testset)

(2006)



Experimental Results 
(phonetic recognition in TIMIT core testset)



Generative vs. Discriminative Models
Modeling joint vs. conditional distributions
For high-complexity tasks w/ many sources of 
variability (speech), generative approach more 
straightforward in conceptualization
Longer history of research 
(e.g., HMM: Jelinek75; Baker75; CRF: Pereira 05)

Easier to systematically embed knowledge
Easier to diagnose recognizer errors
Tend to be more complex 
Rely more on “physical modeling” instead of 
“feature engineering”
Both approaches have merits



Summary

Complex, multiple, interacting sources of speech variability 
robustness in ASR
Need for “high-fidelity” acoustic modeling

Rich sets of useful, albeit incomplete, knowledge
What kind of knowledge?

Capture essence of speech variability
Be amenable to computation and automatic learning  

Example 1: phase-sensitive model of acoustic distortion
Example 2: hidden dynamic model for variability in 
speaking behavior
Both models specify conditional dependency in two 
separate layers in a Bayesian network 



Future Directions

Recent NIST MINDS Report (Baker, Deng, Khudanpur, Lee, 
Glass, Morgan, 2007)

Advanced acoustic models for “everyday audio”
Adaptation and self learning 
Cognition-derived speech models 
Better use of human speech production & 
perception knowledge (e.g., masking & attention; 
discriminative features & learning, etc.)
Require much higher “fidelity” in acoustic models 
than presented in this talk





Procedure
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