# Dealing with unexpexted acoustic inputs in ASR

Hynek Hermansky

IDIAP Research Institute Martigny
Swiss Federal Institute of Technology in
Lausanne, Switzerland

Introduction to a panel discussion at ASRU 2007, Kyoto, Japan December 2007

## The Problem

- Acoustic inputs
  - not seen in the training
  - not expected by a prior knowledge
- Out-of-vocabulary, outof-language, out-ofdomain words, accented speech, children speech, accented speech, unexpected noises, e.t.c.
- Typically replaced by a high probability (sometimes) acoustically similar words
- Is this a inherent problem of the current stochastic approach to ASR?

## A way of dealing with lousy acoustic modeling

$$w \propto \underset{i}{\operatorname{arg\,max}}(p(x \mid M(w_i)P(M(w_i)^{\gamma}))$$

 $M(w_i)$  – model of the whole utterance

**Good:** parts of the utterance can be corrupted and the utterance can still be correctly recognized

**Bad:** low prior probability items in the utterance may be substituted by wrong ones

#### Low prior probability words

- rare
  - lower impact of the final WER ©
- unexpected
  - therefore information-rich

#### possible space of signals



- The amount of information gained by receiving the signal is proportional to ratio of these two areas
- The less probable the signal, the more information is gained

Czech sentence: Koupil jsem si novy computer, ktery nefunguje.



Recognized as:

|although|some|sort|of|the| computer | can | either | way |

## Electrophysiology and speech comprehension

#### Event-related potentials

- brain electrical activity (neocortex ?)
- negative potential activity (N400) indicates "difficulty" in processing of the information (Kutas et al, since 1980)

#### Words in sentence

-van Petten at al., credit to J.B. Allen

400 ms



Pay with .....

negative magnitude of averaged EEG



Context of the sentence is used simultaneously (**in parallel**) with the recognition of the word

## Word errors in human recognition of speech



 $error_{context} = error_{no context}^{k}$ 

error context = error no context error context channel

#### errors multiply

context (top-down) channel is acting in parallel with the acoustic (bottom-up) channel

Miller 1962

-interpretation by Boothroyd and Nittrouer 1998

-credit to J. B. Allen

Three ways of getting the word right

- 1. From both the sensory data and the context
- 2. From strong context cues when the sensory data impoverished
- 3. From reliable sensory data even when the context suggest otherwise

## One proposed solution

(2007 JHU Summer Workshop)



Requires development of the "weakly constrained" recognizer

## Towards better "weakly constrained" recognizer



Posteriors can be also used for deriving features for a conventional HMM-based recognizer

## Posteriors in Conventional HMM System (TANDEM)

